
Methods of Statistical Inference

Sinan Yıldırım

June 6, 2022



Contents

1 Some basics in classical statistics 1
A Samples from an infinite population . . . . . . . . . . . . . . . . . . . . . . 1
B Samples from normal populations . . . . . . . . . . . . . . . . . . . . . . . 2

B.1 Single population . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
B.2 Two populations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

C Hypotheses tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
C.1 Error of a hypothesis test . . . . . . . . . . . . . . . . . . . . . . . 8
C.2 Deriving decision rules systematically . . . . . . . . . . . . . . . . . 8

C.2.1 Neyman-Pearson Lemma . . . . . . . . . . . . . . . . . . . 9
C.2.2 Likelihood ratio test . . . . . . . . . . . . . . . . . . . . . 10

D Significance tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
D.1 Confidence intervals . . . . . . . . . . . . . . . . . . . . . . . . . . 11
D.2 Tests concerning the mean . . . . . . . . . . . . . . . . . . . . . . . 12

D.2.1 One population . . . . . . . . . . . . . . . . . . . . . . . . 12
D.2.2 Two populations . . . . . . . . . . . . . . . . . . . . . . . 13

D.3 Tests concerning the variance . . . . . . . . . . . . . . . . . . . . . 14
D.3.1 One population . . . . . . . . . . . . . . . . . . . . . . . . 14
D.3.2 Two populations . . . . . . . . . . . . . . . . . . . . . . . 16

D.4 Tests concerning proportions . . . . . . . . . . . . . . . . . . . . . . 17

2 The Analysis of Variance 20
A The one-way layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

A.1 Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
A.2 Testing equality of the means in one-way ANOVA . . . . . . . . . . 21
A.3 Contrasts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

A.3.1 Orthogonal contrasts . . . . . . . . . . . . . . . . . . . . . 24
B Multiple hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

B.1 Error rates regarding multiple hypotheses . . . . . . . . . . . . . . 27
B.2 Methods for controlling FWER . . . . . . . . . . . . . . . . . . . . 28

B.2.1 Bonferroni correction: . . . . . . . . . . . . . . . . . . . . 29
B.2.2 S̆idák correction . . . . . . . . . . . . . . . . . . . . . . . 29
B.2.3 Simultanenous confidence intervals . . . . . . . . . . . . . 31
B.2.4 Back to contrasts . . . . . . . . . . . . . . . . . . . . . . . 36

C Two-way layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
C.1 A motivation: Randomised block design . . . . . . . . . . . . . . . 42
C.2 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

i



3 Linear Regression 46
A Simple linear regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

A.1 Least squares solution . . . . . . . . . . . . . . . . . . . . . . . . . 48
A.2 Best linear unbiased estimator . . . . . . . . . . . . . . . . . . . . . 50

A.2.1 A general statistical model for simple linear regression . . 50
A.2.2 Estimation of regression parameters . . . . . . . . . . . . 51

A.3 Models with distribution assumptions . . . . . . . . . . . . . . . . . 56
A.3.1 Conditional normal model . . . . . . . . . . . . . . . . . . 56
A.3.2 Bivariate normal model . . . . . . . . . . . . . . . . . . . 57
A.3.3 Estimation and testing with normal errors . . . . . . . . . 59
A.3.4 Inference for the parameters . . . . . . . . . . . . . . . . . 64
A.3.5 Estimation and prediction at a new predictor . . . . . . . 67
A.3.6 Simultaneous estimation and confidence intervals . . . . . 69

B Multiple normal linear regression . . . . . . . . . . . . . . . . . . . . . . . 70
B.1 Maximum likelihood estimation and properties . . . . . . . . . . . . 71

B.1.1 Distribution of β̂ . . . . . . . . . . . . . . . . . . . . . . . 72
B.1.2 Distribution of S2

e . . . . . . . . . . . . . . . . . . . . . . 72
B.1.3 Independence between β̂ and S2

e . . . . . . . . . . . . . . . 74
B.2 Relation to the simple linear model . . . . . . . . . . . . . . . . . . 75
B.3 Tests for β: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

B.3.1 Testing for linear regression (at all) . . . . . . . . . . . . . 76
B.3.2 Tests for a single component of β: . . . . . . . . . . . . . . 79
B.3.3 Testing for the whole β . . . . . . . . . . . . . . . . . . . 79
B.3.4 Testing a part of β . . . . . . . . . . . . . . . . . . . . . . 81
B.3.5 Testing for any linear combination of β . . . . . . . . . . . 86

B.4 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4 Bayesian Inference 90
A Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

A.1 A review of Bayes’ rule . . . . . . . . . . . . . . . . . . . . . . . . . 90
A.2 Posterior distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 92
A.3 Prior selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

A.3.1 Informative priors . . . . . . . . . . . . . . . . . . . . . . 96
A.3.2 Weakly informative priors . . . . . . . . . . . . . . . . . . 97
A.3.3 Uninformative priors . . . . . . . . . . . . . . . . . . . . . 97
A.3.4 Improper priors . . . . . . . . . . . . . . . . . . . . . . . . 98
A.3.5 Conjugate priors . . . . . . . . . . . . . . . . . . . . . . . 98

B Quantities of interest in Bayesian inference . . . . . . . . . . . . . . . . . . 102
B.1 Posterior mean and median . . . . . . . . . . . . . . . . . . . . . . 102
B.2 Maximum a posteriori estimation . . . . . . . . . . . . . . . . . . . 103
B.3 Posterior predictive distribution . . . . . . . . . . . . . . . . . . . . 104
B.4 Credible Intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

B.4.1 Credible intervals and confidence intervals . . . . . . . . . 105

ii



B.4.2 Choosing a credible interval . . . . . . . . . . . . . . . . . 106
C Sampling from posterior distributions . . . . . . . . . . . . . . . . . . . . . 107

C.1 Rejection sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
C.1.1 When π(θ) is known up to a normalising constant . . . . . 112

C.2 Importance sampling . . . . . . . . . . . . . . . . . . . . . . . . . . 113
C.2.1 Self-normalised importance sampling . . . . . . . . . . . . 115

C.3 Markov chain Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . 119
C.3.1 Metropolis-Hastings . . . . . . . . . . . . . . . . . . . . . 119
C.3.2 Gibbs sampling . . . . . . . . . . . . . . . . . . . . . . . . 127
C.3.3 Metropolis within Gibbs . . . . . . . . . . . . . . . . . . . 133

A Some Basics of Probability 134
A Axioms and properties of probability . . . . . . . . . . . . . . . . . . . . . 134
B Random variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

B.1 Discrete random variables . . . . . . . . . . . . . . . . . . . . . . . 136
B.2 Continuous random variables . . . . . . . . . . . . . . . . . . . . . 136

B.2.1 Some continuous distributions . . . . . . . . . . . . . . . . 137
B.3 Moments, expectation and variance . . . . . . . . . . . . . . . . . . 137
B.4 More than one random variables . . . . . . . . . . . . . . . . . . . . 138

C Conditional probability and Bayes’ rule . . . . . . . . . . . . . . . . . . . . 140

B Discrete time Markov chains 141
A Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
B Properties of Markov(η,M) . . . . . . . . . . . . . . . . . . . . . . . . . . 143

B.1 Irreducibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
B.2 Recurrence and Transience . . . . . . . . . . . . . . . . . . . . . . . 144
B.3 Invariant distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 145
B.4 Reversibility and detailed balance . . . . . . . . . . . . . . . . . . . 146

C Exact sampling methods 149
A Pseudo-random number generation . . . . . . . . . . . . . . . . . . . . . . 149
B Some exact sampling methods . . . . . . . . . . . . . . . . . . . . . . . . . 150

B.1 Method of inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
B.2 Transformation (change of variables) . . . . . . . . . . . . . . . . . 153
B.3 Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

D A toolbox for ANOVA and Linear regression 158

iii



Chapter 1

Some basics in classical statistics

A Samples from an infinite population

Let X1, . . . , Xn be a sample of size n ≥ 1 from an infinite population with mean µ and
variance σ2. Equivalently, we say X1, . . . , Xn are independent and identically distributed
(i.i.d.) with a distribution F with mean µ and variance σ2. We write

X1, . . . , Xn
i.i.d.∼ F, E[Xi] = µ, V (Xi) = σ2, i = 1, . . . , n. (1.1)

Define the sample mean and the sample variance

X̄ =
1

n

n∑
i=1

Xi, S2 =
1

n− 1

n∑
i=1

(Xi − X̄)2.

Several useful properties of X̄ and S2 follow.

Exercise 1.1. Assume (1.1) with σ2 <∞. Show that

(a) E(X̄) = µ and V (X̄) = σ2

n
.

(b)
∑n

i=1(Xi − X̄) = 0.

(c) X̄ and Xi − X̄ are uncorrelated.

(d) For each a > 0, we have P (|X̄ − µ| > a) ≤ σ2/(na2) [Hint: Use the Chebyshev
inequality, i.e. Markov inequality applied to the second central moment.]

(e) E(S2) = σ2.

Identifying relations between random variables plays a crucial role in statistics, such
as in understanding the statistical behaviour of samples, devising practical methods, and
assessing the quality of statistical procedures. One useful specification of the distribution
of a random variable, which can be quite useful for that aim, is its moment generating
function.

1



CHAPTER 1. SOME BASICS IN CLASSICAL STATISTICS 2

Definition 1.1 (Moment generating function). The moment generating function of a
random variable X is defined as

MX(t) = E(etX), t ∈ R.

whenever the expectation exists. More generally, when X = (X1, . . . , Xp) is a vector1, then

MX(t) = E(et
TX), t = (t1, . . . , tp) ∈ Rp.

whenever the expectation exists.

The moment generating function of a random variable may or may not exist. Also, as
hinted by its definition, the support of the function varies across distributions. Moment
generating functions are useful for deriving the moments of a distribution: Consider for
simplicity that X is scalar with moment generation function MX(t). The k’th partial
derivative of MX(t) with respect to t, evaluated at t = 0 is given by

∂kMX(t)

∂t

∣∣∣∣
t=0

=
∂kE(etX)

∂t

∣∣∣∣
t=0

= E(XketX)
∣∣
t=0

= E(Xk).

Similar derivations can be made for the moment generating function of a random vector.
The practicality of the moment generating function is not limited to calculating mo-

ments. When the moment generating function of a random variable exists, it uniquely
determines the random variable’s distribution. This allows one to identify the distribution
of a random variable constructed from other random variables by inspecting its moment
generating function.

B Samples from normal populations

Normal populations are central to classical statistics. We will define the normal and
multivariate normal distributions first, and then derive several properties, test statistics,
and other distributions arising from samples from normal populations.

Definition 1.2 (Normal distribution). We say a random variable X has a normal distri-
bution with mean µ and variance σ2 > 0, and show it by N (µ, σ2), if it has a probability
density function given by

f(x) =
1√

2πσ2
exp

(
− 1

2σ2
(x− µ)2

)
, −∞ < x <∞

Exercise 1.2. Show that the moment generating function of X ∼ N (µ, σ2) is

MX(t) = exp

(
tµ+

1

2
σ2t2

)
, t ∈ R.

1It is more conventional, and usually more convenient, to define random vectors as column vectors.
That is why we will use the notation v = (v1, . . . , vn) to mean that v is a column vector of size n, that is,

(v1, . . . , vn) =
[
v1 . . . vn

]T
. Also, the space of column vectors of size n will be shown as Rn or Rn×1
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A multivariate version of the normal distribution exists with very close connections to
the univariate one.

Definition 1.3 (Multivariate normal distribution). A random vector X = (X1, . . . , Xn)
with mean vector m = (m1, . . . ,mn) and a positive semidefinite covariance Σ = (Σij) has
a multivariate normal distribution, shown by N (m,Σ), if its moment generating function
is written as

MX(t) = exp

(
tTm+

1

2
tTΣt

)
, t = (t1, . . . , tn) ∈ Rn.

Note that we do not define the multivariate normal distribution by its probability
density function, since the pdf does not always exist. Specifically, if Σ is positive definite
(non-singular) with inverse Σ−1, then X has a probability density function given by

f(x) =
1√

2π det Σ
exp

{
−1

2
(x−m)TΣ−1(x−m)

}
, x ∈ Rn.

A linear transformation of X is any random variable written in the form of aTX + b,
where a is a vector of the same size as X and b is a scalar. Linear transformations help
lay out an important relation between multivariate and univariate normal distributions.

Theorem 1.1. Let X = (X1, . . . , Xn) be a random vector with mean m and covariance Σ.
Then, X has a multivariate normal distribution if and only if every linear transformation
of X has a univariate normal distribution.

Application of the result above with n = 1 reduces to stating that a linear transfor-
mation of a random variable with a univariate normal distribution also has a univariate
normal distribution.

One can show that a matrix transformation of a random vector with a multivariate
normal distribution has also a multivariate normal distribution.

Exercise 1.3. Suppose that X has a multivariate normal distribution with mean vector
m and covariance Σ. Show that, for any matrix A ∈ Rr×n and a column vector b ∈ Rr,
the vector Y = AX + b has a multivariate normal distribution, Y ∼ N (Am+ b, AΣAT ).

We call N (0, 1) the standard normal distribution. Accordingly, given X ∼ N (µ, σ2),
the random variable is we call

Z = (X − µ)/σ (1.2)

the standardised normal random variable, or X is said to be standardised when it is
transformed as in (1.2).

Exercise 1.4. Show that Z ∼ N (0, 1).
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B.1 Single population

Sample from a normal population: Let X1, . . . , Xn be a random sample of size n
from a (infinite) normal population with mean µ and variance σ2 < ∞. Equivalently, we
write

X1, . . . , Xn
i.i.d.∼ N (µ, σ2) (1.3)

It should be easy to show that X̄ ∼ N (µ, σ2/n) and, in particular,

X̄ − µ
σ/
√
n
∼ N (0, 1).

Definition 1.4 (Chi-square distribution). We say a random variable X has a chi-square
distribution with ν degrees of freedom, and show it by χ2

ν , if it has a probability density

f(x) =
1

2ν/2Γ(ν/2)
xν/2−1e−x/2, x > 0.

The relevance of the chi-square distribution to normal populations is due to the follow-
ing fundamental relation between N (0, 1) and χ2

1.

Theorem 1.2. If Z ∼ N (0, 1), we have Z2 ∼ χ2
1.

The next set of results establishes that the family of chi-squared distributions is closed
under addition.

Exercise 1.5. Use the moment generating function to show the following.

(a) If X ∼ χ2
ν1

, Y ∼ χ2
ν2

, and X, Y are independent, X + Y ∼ χ2
ν1+ν2

.

(b) If X and Y are independent, X ∼ χ2
ν1

, and X + Y ∼ χ2
ν1+ν2

, then Y ∼ χ2
ν2

.

(c) Let X1, . . . , Xn be a sample of size n from a normal population with mean µ and
variance σ2 <∞ and let Zi = (Xi − µ)/σ. Then

∑n
i=1 Z

2
i ∼ χ2

n.

A central result for a random sample from a normal population is the independence
between X̄ and S2. Independence between the sample mean and the sample variance is not
only a nice result on its own (e.g., for providing independent estimators for the parameters
of the distribution), but it also leads to a closed-form distribution for (a scaled version of)
the sample variance. The next two exercises show the steps for obtaining the independence
relation and the sampling distribution of S2.

Exercise 1.6. Let X1, . . . , Xn be a random sample of size n from a normal population
with mean µ and variance σ2 <∞. Show that

(a) X̄ and Xi − X̄ are independent,

(b) the sample mean X̄ and the vector (Xi − X̄, . . . , Xn − X̄) are independent,
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(c) the sample mean X̄ and the sample variance S2 are independent.

Next, we establish the sampling distribution of S2 by the following the steps of the
exercise below.

Exercise 1.7. Let X1, . . . , Xn be a random sample of size n from a normal population
with mean µ and variance σ2 <∞.

(a) Show that
n∑
i=1

(Xi − µ)2 =
n∑
i=1

(Xi − X̄)2 + n(X̄ − µ)2.

(b) Using the above, show that

1

σ2

n∑
i=1

(Xi − µ)2 =
(n− 1)S2

σ2
+

(X̄ − µ)2

σ2/n
.

(c) Finally, conclude that (n− 1)S2/σ2 ∼ χ2
n−1.

Another distribution related to a random sample is the t-distribution.

Definition 1.5 (t-distribution). We say a random variable X has a t-distribution with ν
degrees of freedom, and show it by tν , if it has a probability density

f(x) =
Γ((ν + 1)/2)

Γ(ν/2)
√
πν

(
1 +

x2

v

)−(ν+1)/2

, −∞ < x <∞.

The t-distribution characterises the ratio between the sample mean and the sample
variance of a random sample from a normal distribution. The result in the exercise below
indicates the practical relevance of the t-distribution to normal populations.

Theorem 1.3. If X ∼ N (0, 1), Y ∼ χ2
ν, and X, Y are independent, then,

X√
Y/ν

∼ tν

Exercise 1.8. Let X1, . . . , Xn be a random sample of size n from a normal population
with mean µ and variance σ2 <∞. Using the result of Theorem 1.3, show that the random
variable

T =
X̄ − µ
S/
√
n
∼ tn−1.

Finally, we will introduce the F -distribution, which characterises the ratio between two
independent chi-squared random variables.
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Definition 1.6 (F -distribution). We say a random variable X has a F -distribution with
ν1 and ν2 degrees of freedom, and show it by Fν1,ν2 , if it has a probability density

f(x) =
Γ((ν1 + ν2)/2)(ν1/ν2)ν1/2

Γ(ν1/2)Γ(ν2/2)

xν1/2−1

(1 + xν1/ν2)(ν1+ν2)/2
, 0 < x <∞.

Theorem 1.4. If X ∼ χ2
ν1

, Y ∼ χ2
ν2

, and X, Y are independent, then,

X/ν1

Y/ν2

∼ Fν1,ν2 .

Exercise 1.9. Show that, if X ∼ tν , then,

X2 ∼ F1,ν .

B.2 Two populations

Sometimes, we are interested in inference about two random samples from two independent
normal populations. The following exercise covers some common test statistics relevant to
two normal populations.

Exercise 1.10. Suppose that we have two random samples of sizes n1 and n2 from two
independent normal populations

X11, . . . , X1n1

i.i.d.∼ N (µ1, σ
2
1), X21, . . . , X2n2

i.i.d.∼ N (µ2, σ
2
2).

Denote the sample means and variances of those samples by X̄1, X̄2 and S2
1 , S2

2 , respectively.

(a) Show that
X̄1 − X̄2 − (µ1 − µ2)√

σ2
1/n1 + σ2

2/n2

∼ N (0, 1)

(b) Show that
(n1 − 1)S2

1

σ2
1

+
(n2 − 1)S2

2

σ2
2

∼ χ2
n1+n2−2.

(c) Show that, when σ2
1 = σ2

2, we have

X̄1 − X̄2 − (µ1 − µ2)

Sp
√

1/n1 + 1/n2

∼ tn1+n2−2

where S2
p is called the pooled sample variance and is given by

S2
p =

S2
1(n1 − 1) + S2

2(n2 − 1)

n1 + n2 − 2

(d) Show that
S2

1/σ
2
1

S2
2/σ

2
2

∼ Fn1−1,n2−1.
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Paired samples: Sometimes the populations are not independent, and even not nec-
essarily normal. Here, we are interested in such a special case. In particular, we are
interested in paired samples from two different populations, with means µ1 and µ2, such
that

X11, . . . , X1n
i.i.d.∼ F1, X21, . . . , X2n

i.i.d.∼ F2, Z1, . . . , Zn
i.i.d.∼ N (µd, σ

2
d) (1.4)

where Zi = X1i − X2i is the difference, µd = E(Z1) is the mean of the difference, which
necessarily satisfies µd = µ1 − µ2, and σ2

d is the variance of the difference. Under (1.4), we
can simply treat Z1, . . . , Zn as a random sample from a single normal population.

C Hypotheses tests

Suppose we have a population with a distribution whose probability density (or probability
mass) function is denoted by f(x; θ), where θ ∈ Θ is a parameter vector of this distribution
and Θ is the whole support of θ. A hypothesis test regarding the parameter vector θ of
this population is in the following form

H0 : θ ∈ Θ0, vs H1 : θ ∈ Θ1.

The result of a hypothesis test is the choice of one of the hypotheses over the other.
However, the terminology typically is one-sided: H0 is called the null hypothesis, H1 is
called the alternative hypothesis and accepting H1 over H0 is usually referred to as “re-
jecting H0” or “rejecting the null (hypothesis)”.

Depending on the observed values of X1, . . . , Xn, typically denoted by x1, . . . , xn (small-
case counterparts of the symbols used for the random variables), we decide whether to
accept H0 or H1. The set of values at which H0 is rejected is called the critical region,
which we will show as C.

Usually, whether H0 is accepted or rejected depends on the observed value of a test
statistic T : X n → R. Therefore, the critical region C is defined through this test statistic.
Typical forms are

C = {x1, . . . , xn : T (x1:n) ∈ [tc,∞)},
C = {x1, . . . , xn : T (x1:n) ∈ (−∞, tc]},
C = {x1, . . . , xn : T (x1:n) ∈ [−tc, tc]},
C = {x1, . . . , xn : T (x1:n) ∈ R \ [−tc, tc]}.

Values like tc, appearing in the definition of a critical region, usually define the borders of
the critical region and are referred to as critical values.

As short-hand notation, critical regions are sometimes expressed in terms of the set R
of values of the observed test statistic, tobs = T (x1:n), that is

C = {tobs ∈ R}

For example, in the first example for C above, R = [tc,∞].
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C.1 Error of a hypothesis test

There is almost always a non-zero chance that the result of the hypothesis test will be
wrong, i.e., we end up choosing the wrong hypothesis among the two. There are two types
of errors one can make in a hypothesis test.

Definition 1.7 (Type-I error and size of a test). The error we commit by rejecting H0

when H0 is true is called type-I error. The probability of committing a type-I error is
called the significance level, or size, of the test, and is usually shown with α.

α = P (type I error) = P (reject H0|H0 is true) = P (X1:n ∈ C|θ ∈ Θ0)

Definition 1.8 (Type-II error and power of a test). The error we commit by accepting
H0 when H1 is true is called type-II error, and usually shown by β.

β = P (type II error) = P (accept H0|H1 is true) = P (X1:n /∈ C|θ ∈ Θ1)

The quantity 1− β is referred to as the power of a test.

Power function: A hypothesis is called simple if it fully specifies the distribution of a
test statistic; otherwise it is called composite. When one or both hypotheses are composite,
probabilities α or β may be unavailable. Instead, one can consider the error probability at
a specific value of θ and define the following error functions: Given a hypotheses test with
given a decision rule, define α : Θ0 7→ [0, 1] and β : Θ1 7→ [0, 1] (with an abuse of notation
we used the same symbols as functions) such that

α(θ) = P (reject H0 | the true parameter is θ), for θ ∈ Θ0

β(θ) = P (accept H0 | the true parameter is θ), for θ ∈ Θ1

A useful function combining α(θ) and β(θ) to monitor the error behaviour is the power
function π : Θ0 ∪Θ1 7→ [0, 1] defined as

π(θ) =

{
α(θ), for θ ∈ Θ0

1− β(θ), for θ ∈ Θ1.
, θ ∈ Θ0 ∪Θ1

Simply put, π(θ) is the probability of rejecting H0 when the true parameter is θ.

C.2 Deriving decision rules systematically

Recall that the decision rule of a hypothesis test is defined via a critical region C. The
critical region C may or may not depend on values in Θ0 and Θ1. Two different critical
regions for the same pair of hypotheses correspond to two different tests. Therefore, “test”
and “critical region” are used interchangeably in this context. A natural question is, then,
the following: Among all candidates, which critical region (or test) is better?
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The power function of a test allows us to compare it with other tests. Let us restrict
our question to comparing the tests of the same size. However, since a single type I error
probability may not be available for a test, as discussed at the beginning of this section,
we generalise the definition of a size of a test as below.

Definition 1.9 (Size of a test). A hypothesis test with power function π(θ) is called to
have size α if

sup
θ∈Θ0

π(θ) = α.

A reasonable comparison is in terms of power functions among all tests with sizes equal
to (or smaller than) a given α.

Definition 1.10 (Uniformly most powerful test). A critical region C of size α is called
uniformly most powerful if, for any other critical region C ′ with size at most α, we have

π(θ) ≥ π′(θ), ∀θ ∈ Θ1.

where π(θ) and π′(θ) are the power functions corresponding to C and C ′, respectively. The
test that uses C as its critical region is called a uniformly most powerful test.

C.2.1 Neyman-Pearson Lemma

When both hypotheses are simple, so that f(x; θ) can be written under both hypotheses,
the Neyman-Pearson Lemma establishes the most powerful test among tests of a given
size.

Assume X1, . . . , Xn are i.i.d. with a probability density (or mass) function given by
f(x; θ). Given X1:n = x1:n, define the likelihood function

L(θ;x1:n) =
n∏
i=1

f(xi; θ), θ ∈ Θ.

Theorem 1.5 (Neyman-Pearson Lemma). Suppose both hypotheses are simple, i.e., H0 :
θ = θ0 and H1 : θ = θ1 for some θ0, θ1 ∈ Θ. The critical region of the most powerful test
is of the form

C =

{
x1, . . . , xn :

L(θ0;x1:n)

L(θ1;x1:n)
≤ c

}
where c is selected such that P ((X1, . . . , Xn) ∈ C|θ = θ0) = α (the type-I error probability
is α).

The Neyman-Pearson lemma states that, observing X1:n = x1:n, the decision rule of the
most powerful test is

Decision =

{
H0, for L(θ0;x1:n)

L(θ1;x1:n)
> c,

H1, for L(θ0;x1:n)
L(θ1;x1:n)

≤ c.
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C.2.2 Likelihood ratio test

When one or both hypotheses are composite, the Neyman-Pearson Lemma is not use-
ful. Instead, we introduce a popular test, likelihood ratio test, which generalizes the test
suggested by the Neyman-Pearson Lemma for composite hypotheses.

Definition 1.11 (Likelihood ratio statistic). Given two hypotheses H0 : θ ∈ Θ0 and
H1 : θ ∈ Θ1, where Θ0 and Θ1 are disjoint subsets of Θ, the likelihood ratio statistic is
defined as

TLR(X1:n) = −2 ln

[
supθ∈Θ0

L(θ;X1:n)

supθ∈Θ0∪Θ1
L(θ;X1:n)

]
.

Definition 1.12 (Likelihood ratio test). A hypothesis test of size α is called a likelihood
ratio test if its critical region is of the form

C = {x1, . . . , xn : TLR(x1:n) > c}

where c is such that supθ∈Θ0
π(θ) = α.

Although it is not always easy to derive the exact decision rule of the likelihood ratio
test in closed form, the asymptotical behaviour of TLR(X1:n) in n is known. Specifically,
when θ is p dimensional and the null hypothesis is in the form

H0 : θ1 = θ∗1, . . . , θk = θ∗k,

for some k ≤ p then, under some general conditions, we have

TLR(X1:n)
d→ χ2

k

under the null hypothesis H0.

D Significance tests

We will review null hypothesis significance tests, or shortly significance tests, regarding
parameters of normal populations and proportions regarding what is known as Bernoulli
populations. Classical tests regarding normal populations are either likelihood ratio tests,
or tractable approximations of the likelihood ratio tests when the test statistic has a
non-symmetrical distribution. Due to the central limit theorem, tests for proportions are
developed based on certain normality approximations of sample proportions.

In significance tests, the size α, that is, the type I error probability, is usually a design
parameter. For significance tests for normal populations, this parameter is also called the
significance level. For the tests we will consider here, the critical region C, in which we
reject H0, can be determined to make the type I error exactly equal to a desired α. The
only exception is for the tests for proportions, where we rely on the central limit theorem
to make normality assumptions.



CHAPTER 1. SOME BASICS IN CLASSICAL STATISTICS 11

D.1 Confidence intervals

Before going to the tests, we will discuss confidence intervals for an unknown parameter
in question, which are random intervals that contain the true value of the parameter
with a given high probability. Confidence intervals themselves deserve separate attention.
However, for sake of the compactness of the review, we will mostly confine our discussion
to their connections to critical regions of the significance tests.

Definition 1.13 (Confidence interval). Let X1, . . . , Xn be a sample from a population
and let θ ∈ Θ be a particular parameter of interest of the population distribution. A
100(1− α)% confidence interval of θ is a set CI ⊆ Θ such that

P (θ ∈ CI) = 1− α.

where the randomness involved in the statement above is due to CI depending on X1:n.

The above definition indicates that there is not a unique confidence interval for a
parameter. For example, we can have left-sided, right-sided (one-sided, to call them with
a common name), or (typically more than one) two-sided confidence intervals for the same
parameter with the same significance level, depending on the purpose of the analysis.

The definition also indicates that CI is a random interval. When X1:n = x1:n is ob-
served, the computed value of CI is only the observed confidence interval associated to
x1:n. Therefore, after we compute a confidence interval from a specific observed sample,
we cannot say that that particular confidence interval contains θ with probability 1 − α.
A correct interpretation is: the confidence interval computed from a random sample will
contain θ with probability 1 − α. A (correct) frequentist interpretation: If I have 1000
independent random samples of size n, and compute the confidence interval for θ for each
sample, I expect around 1000(1− α) of the resulting 1000 confidence intervals to contain
θ.

We will use CI both to indicate the confidence interval as a random interval or its
computed value when we observe X1:n = x1:n. The distinction should be clear from the
context.

As shown in the following exercise, there exists a duality between confidence intervals
and critical regions. Specifically, noting that CI depends on X1:n, a critical region of size
α for H0 : θ = θ0 can be defined as

C = {x1:n : θ0 /∈ CI}.

Exercise 1.11. Suppose we have significance test with a null hypothesis H0 : θ = θ0 and
let CI is a 100(1− α)% confidence interval for θ. Consider the decision rule given as

Decision =

{
Reject H0, for θ0 /∈ CI

Do not reject H0, for θ0 ∈ CI

Show that this test’s size, or type I error probability, is α.

It turns out that, confidence intervals that are dual to the critical regions of the signif-
icance tests covered above can easily be detected.
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D.2 Tests concerning the mean

D.2.1 One population

Suppose we take a random sample X1, . . . Xn from a normal population with mean µ and
known or unknown variance σ2. Recall that

Z =
X̄ − µ
σ/
√
n
∼ N (0, 1), T =

X̄ − µ
S/
√
n
∼ tn−1

Given X1:n = x1:n, we will denote their observed values evaluated at µ = µ0 as zobs and
tobs, respectively, i.e.,

zobs =
x̄− µ0

σ/
√
n
, tobs =

x̄− µ0

s/
√
n

We will consider the simple null hypothesis H0 : µ = µ0 against each of the following:
a two-sided alternative µ 6= µ0 and two one-sided alternatives µ > µ0 and µ < µ0.

When the variance is known: When the variance is known, the likelihood ratio test
for the unknown mean is a z-test2 and its critical region is stated in terms of critical values
of the standard normal distribution. Let zα be the critical value for the standard normal
distribution at α such that, when Z ∼ N (0, 1) we have P (Z > zα) = α.

Exercise 1.12. Assume X1, . . . , Xn form a random sample from a normal population
with an unknown mean µ and known variance σ2. Show that the critical region C of the
likelihood ratio test for testing H0 : µ = µ0 can be expressed as3

C =


|zobs| > zα/2, if H1 : µ 6= µ0

zobs > zα, if H1 : µ > µ0

zobs < −zα, if H1 : µ < µ0

or, equivalently, C = {x1:n : µ0 /∈ CI}, where

CI =


(
x̄− zα/2 σ√

n
, x̄+ zα/2

σ√
n

)
, if H1 : µ 6= µ0(

x̄− zα σ√
n
,∞
)
, if H1 : µ > µ0(

−∞, x̄+ zα
σ√
n

)
, if H1 : µ < µ0

When the variance is unknown: When the variance is unknown, the likelihood ratio
test for the unknown mean is a t-test and its critical region is stated in terms of critical
values of a t distribution. Let tα,ν be the critical value for the tν such that, when Y ∼ tν
we have P (Y > tα,ν) = α.

2Any test whose test statistic has the standard normal distribution can be called a z test. Likewise,
a t-test, a chi-square test, or an f -test does not uniquely specify a certain test but rather refers to the
distribution of the test statistic under the null hypothesis.

3The set formalism is relaxed for ease of notation – the RHS is in fact a set.
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Exercise 1.13. Assume X1, . . . , Xn form a random sample from a normal population
with an unknown mean µ and unknown variance σ2. Show that the critical region C of
the likelihood ratio test for testing H0 : µ = µ0 can be expressed as

C =


|tobs| > tα/2,n−1, if H1 : µ 6= µ0

tobs > tα,n−1, if H1 : µ > µ0

tobs < −tα,n−1, if H1 : µ < µ0

or, equivalently, C = {x1:n : µ0 /∈ CI}, where

CI =


(
x̄− tα/2,n−1

S√
n
, x̄+ tα/2,n−1

S√
n

)
, if H1 : µ 6= µ0(

x̄− tα,n−1
S√
n
,∞
)
, if H1 : µ > µ0(

−∞, x̄+ tα,n−1
S√
n

)
, if H1 : µ < µ0

D.2.2 Two populations

Suppose that we have two random samples of sizes n1 and n2 from two independent normal
populations

X11, . . . , X1n1

i.i.d.∼ N (µ1, σ
2
1), X21, . . . , X2n2

i.i.d.∼ N (µ2, σ
2
2).

Denote the sample means and variances of those samples by X̄1, X̄2 and S2
1 , S2

2 , respectively.
Let δ = µ1 − µ2 be the difference between the means. We will consider the simple null
hypothesis H0 : δ = δ0 against each of the following: a two-sided alternatives δ 6= δ0 and
two one-sided alternatives δ > δ0 and δ < δ0.

Recall that the test statistic

Zd =
X̄1 − X̄2 − (µ1 − µ2)√

σ2
1/n1 + σ2

2/n2

∼ N (0, 1)

and, provided that σ2
1 = σ2

2,

X̄1 − X̄2 − (µ1 − µ2)

Sp
√

1/n1 + 1/n2

∼ tn1+n2−2

where S2
p is the pooled sample variance. Denote the observed values of those statistics

evaluated at µ1 − µ2 = δ0 by

zd,obs =
x̄1 − x̄2 − δ0√
σ2

1/n1 + σ2
2/n2

, td,obs =
x̄1 − x̄2 − δ0

sp
√

1/n1 + 1/n2
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When variances are known: When the variances are known, the likelihood ratio test
for testing H0 : δ = δ0 is a z test.

Exercise 1.14. Assume that σ2
1 and σ2

2 are known. Show that the critical region C of the
likelihood ratio test for testing H0 : δ = δ0 can be expressed as

C =


|zd,obs| > zα/2 H1 : δ 6= δ0

zd,obs > zα H1 : δ > δ0

zd,obs < −zα H1 : δ < δ0

or, equivalently, C = {x1:n : δ0 /∈ CI}, where

CI =



(
x̄1 − x̄2 − zα/2

√
σ2
1

n1
+

σ2
2

n2
, x̄1 − x̄2 + zα/2

√
σ2
1

n1
+

σ2
2

n2

)
, if H1 : δ 6= δ0(

x̄1 − x̄2 − zα
√

σ2
1

n1
+

σ2
2

n2
,∞
)
, if H1 : δ > δ0(

−∞, x̄1 − x̄2 + zα

√
σ2
1

n1
+

σ2
2

n2

)
, if H1 : δ < δ0

When variances are equal and unknown: When the variances are unknown but
equal, the likelihood ratio test for for testing H0 : δ = δ0 is a t test.

Exercise 1.15. Assume that the variances are unknown but equal, σ2
1 = σ2

2. Show that
the critical region C of the likelihood ratio test for testing H0 : δ = δ0 can be expressed as

C =


|td,obs| > tα/2,n1+n2−2 H1 : δ 6= δ0

td,obs > tα,n1+n2−2 H1 : δ > δ0

td,obs < −tα,n1+n2−2 H1 : δ < δ0

or, equivalently, C = {x1:n : δ0 /∈ CI}, where

CI =


(
x̄1 − x̄2 − tα/2,n1+n2−2sp

√
1
n1

+ 1
n2
, x̄1 − x̄2 + tα/2,n1+n2−2sp

√
1
n1

+ 1
n2

)
, if H1 : δ 6= δ0(

x̄1 − x̄2 − tα,n1+n2−2sp
√

1
n1

+ 1
n2
,∞
)
, if H1 : δ > δ0(

−∞, x̄1 − x̄2 + tα,n1+n2−2sp
√

1
n1

+ 1
n2

)
, if H1 : δ < δ0

D.3 Tests concerning the variance

D.3.1 One population

Suppose we take a random sample X1, . . . Xn from a normal population with known or
unknown mean µ and unknown variance σ2. Recall that

Y =

∑n
i=1(Xi − µ)2

σ2
∼ χ2

n, χ =
S2(n− 1)

σ2
∼ χ2

n−1
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Given X1:n = x1:n, we will denote their observed values evaluated at σ = σ0 as yobs and
χ2
obs, respectively, i.e.,

yobs =

∑n
i=1(xi − µ)2

σ2
0

, χ2
obs =

s2(n− 1)

σ2
0

Also, let χ2
α,ν be the critical value for χ2

ν such that, when Y ∼ χ2
ν we have P (Y > χ2

α,ν) = α.
Both when the mean is known or unknown, the resulting likelihood ratio test is a

chi-square test.

Exercise 1.16. Suppose we take a random sample X1, . . . Xn from a normal population
with known µ and unknown variance σ2. Show that the critical region C of the likelihood
ratio test for testing H0 : σ2 = σ2

0 can be expressed as4

C =


yobs < χ2

1−α/2,n or yobs > χ2
α/2,n, if H1 : σ 6= σ0

yobs > χ2
α,n, if H1 : σ > σ0

yobs < χ2
1−α,n, if H1 : σ < σ0

or, equivalently, C = {x1:n : σ2
0 /∈ CI}, where

CI =



(∑n
i=1(xi−µ)2

χ2
α/2,n

,
∑n
i=1(xi−µ)2

χ2
1−α/2,n

)
if H1 : σ 6= σ0(∑n

i=1(xi−µ)2

χ2
α,n

,∞
)
, if H1 : σ > σ0(

0,
∑n
i=1(xi−µ)2

χ2
1−α,n

)
, if H1 : σ < σ0

Exercise 1.17. Suppose we take a random sample X1, . . . Xn from a normal population
with unknown µ and unknown variance σ2. Show that the critical region C of the likelihood
ratio test for testing H0 : σ2 = σ2

0 can be expressed as5

C =


χ2
obs < χ2

1−α/2,n−1 or χ2
obs > χ2

α/2,n−1, if H1 : σ 6= σ0

χ2
obs > χ2

α,n−1, if H1 : σ > σ0

χ2
obs < χ2

1−α,n−1, if H1 : σ < σ0

or, equivalently, C = {x1:n : σ2
0 /∈ CI}, where

CI =



(
(n−1)s2

χ2
α/2,n−1

, (n−1)s2

χ2
1−α/2,n−1

)
if H1 : σ 6= σ0(

(n−1)s2

χ2
α,n−1

,∞
)
, if H1 : σ > σ0(

0, (n−1)s2

χ2
1−α,n−1

)
, if H1 : σ < σ0

4For the first case, the given critical region is approximate. The exact form of the critical region of
the likelihood ratio test is of the form χ2

1−α′,n < yobs < χ2
α′′,n for specific values of α′ and α′′ satisfying

α′ + α′′ = α.
5For the first case, the given critical region is approximate. The exact form of the critical region of the

likelihood ratio test is of the form χ2
1−α′,n−1 < χ2

obs < χ2
α′′,n−1 for specific values of α′ and α′′ satisfying

α′ + α′′ = α.
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D.3.2 Two populations

Suppose that we have two random samples of sizes n1 and n2 from two independent normal
populations

X11, . . . , X1n1

i.i.d.∼ N (µ1, σ
2
1), X21, . . . , X2n2

i.i.d.∼ N (µ2, σ
2
2).

Recall that

U =
1
n1

∑n1

i=1(X1i − µ1)2/σ2
1

1
n2

∑n2

i=1(X2i − µ2)2/σ2
2

∼ fn1,n2 , F =
S2

1/σ
2
1

S2
2/σ

2
2

∼ fn1−1,n2−1

Given X11 = x11, . . . , X1n1 = x1n1 and X21 = x21, . . . , X2n2 = x2n2 , we will denote their
observed values evaluated at σ2

1/σ
2
2 = 1 as uobs and fobs, respectively, i.e.,

uobs =
1
n1

∑n1

i=1(x1i − µ1)2

1
n2

∑n2

i=1(x2i − µ2)2
, fobs =

s2
1

s2
2

Both when the means are known and unknown we have an f -test for testing H0 :
σ2

1/σ
2
2 = 1.

Exercise 1.18. Assume the means µ1 and µ2 are known. Show that the critical region C
of the likelihood ratio test for testing H0 : σ2

1/σ
2
2 = 1 can be expressed as6

C =


uobs < f1−α/2,n1,n2 or uobs > fα/2,n1,n2 , if H1 : σ1/σ2 6= 1

uobs > fα,n1,n2 , if H1 : σ1/σ2 > 1

uobs < f1−α,n1,n2 , if H1 : σ1/σ2 < 1

or, equivalently, C = {x11, . . . , x1n1 ;x21, . . . , x2n2 : 1 /∈ CI}, where

CI =


(
uobsf1−α/2,n2,n1 , uobsfα/2,n2,n1

)
if H1 : σ1/σ2 6= 1

(uobsf1−α,n2,n1 ,∞) , if H1 : σ1/σ2 > 1

(0, uobsfα,n2,n1) , if H1 : σ1/σ2 < 1

Exercise 1.19. Assume the means µ1 and µ2 are unknown. Show that the critical region
C of the likelihood ratio test for testing H0 : σ2

1/σ
2
2 = 1 can be expressed as7

C =


fobs < f1−α/2,n1−1,n2−1 or fobs > fα/2,n1−1,n2−1, if H1 : σ1/σ2 6= 1

fobs > fα,n1−1,n2−1, if H1 : σ1/σ2 > 1

fobs < f1−α,n1−1,n2−1, if H1 : σ1/σ2 < 1

6For the first case, the given critical region is approximate. The exact form of the critical region of the
likelihood ratio test is of the form f1−α′,n1,n2

< uobs < fα′′,n1,n2
for specific values of α′ and α′′ satisfying

α′ + α′′ = α.
7For the first case, the given critical region is approximate. The exact form of the critical region of the

likelihood ratio test is of the form f1−α′,n1−1,n2−1 < fobs < fα′′,n1−1,n2−1 for specific values of α′ and α′′

satisfying α′ + α′′ = α.
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or, equivalently, C = {x11, . . . , x1n1 ;x21, . . . , x2n2 : 1 /∈ CI}, where

CI =


(
fobsf1−α/2,n2−1,n1−1, fobsfα/2,n2−1,n1−1

)
if H1 : σ1/σ2 6= 1

(0, fobsf1−α,n2−1,n1−1) , if H1 : σ1/σ2 > 1

(fobsfα,n2−1,n1−1,∞) , if H1 : σ1/σ2 < 1

Exercise 1.20. The above tests are designed for H0 : σ1/σ2 = 1. How would you modify
them for H0 : σ1/σ2 = c for a general c > 0?

D.4 Tests concerning proportions

Let X1, . . . , Xn be a random sample from a Bernoulli population with success probability
θ, i.e., P (Xi = 1) = 1 − P (Xi = 0) = θ independently for each Xi. Let Y =

∑n
i=1Xi.

Then, Y ∼ Binom(n, θ), the Binomial distribution with number of independent trials n
and success probability θ, with probability mass function

f(k) = P (Y = k) =
n!

k!(n− k)!
θk(1− θ)n−k, k = 0, . . . , n.

If X1:n = x1:n are given with y = x1 + . . .+ xn, the maximum likelihood estimator for θ is

θ̂ = Y/n =
1

n

n∑
i=1

Xi.

Exercise 1.21. Let X1, . . . , Xn be a random sample from a Bernoulli population with
success probability θ, Y = X1 + . . .+Xn, and θ̂ = Y/n. Show that

• E(Xi) = θ and V (Xi) = θ(1− θ).

• E(Y ) = nθ and V (Y ) = nθ(1− θ)

• E(θ̂) = θ and V (θ̂) = θ(1− θ)/n.

It is possible to write down the distribution of θ̂ exactly using the distribution of
Y ; however, because of the combinatorial terms, this distribution is not easy to handle.
Instead, for large enough n we can resort to a normal approximation for θ̂, thanks to the
central limit theorem.

Theorem 1.6. Let X1, X2, . . . are i.i.d. with mean µ and variance σ2 <∞, and let X̄n is
the sample mean of X1, . . . , Xn. Then,

X̄n − µ
σ/
√
n

d→ N (0, 1).

That is, the sample mean converges in distribution to a random variable with standard
normal distribution.
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The informal interpretation of the theorem above is that, for large n, we have X̄ ∼
N (µ, σ2/n) approximately. Applying this to θ̂ = X̄ for when Xi’s are i.i.d. with Bernoulli
distribution, we can use the central limit theorem and say that

θ̂ ∼ N (θ, θ(1− θ)/n)

or
θ̂ − θ√

θ(1− θ)/n
∼ N (0, 1)

approximately. Therefore, given Y = y, a critical region C for testing H0 : θ = θ0 can be
expressed as8

C =


|θ̂ − θ0| > zα/2

√
θ0(1− θ0)/n, if H1 : θ 6= θ0

θ̂ − θ0 > zα
√
θ0(1− θ0)/n, if H1 : θ > θ0

θ̂ − θ0 < −zα
√
θ0(1− θ0)/n, if H1 : θ < θ0

(1.5)

Note that we did not provide a confidence interval that corresponds to the C given above.
The reason is that, with θ appearing in the variance, it is difficult to derive a confidence
interval for θ. However; the variance of θ̂ can also be estimated by θ̂(1− θ̂)/n and we have
the resulting approximation

θ̂ − θ√
θ̂(1− θ̂)/n

∼ N (0, 1)

from which we can build one-sided and two-sided CI’s of the formθ̂ − zα/2
√
θ̂(1− θ̂)

n
, θ̂ + zα/2

√
θ̂(1− θ̂)

n

 ,

θ̂ − zα
√
θ̂(1− θ̂)

n
, 1

 ,
0, θ̂ + zα

√
θ̂(1− θ̂)

n


depending on the purpose. (Why are the borders 0 and 1?) If in C in (1.5), we replaced
the θ0’s appearing on the right-hand side by θ̂’s, then the confidence intervals and the
critical region would be fully consistent.

When two populations are concerned, we can use similar approximations. For example,
givenX11, . . . , X1n1 andX21, . . . , X2n2 from Bernoulli populations with success probabilities
θ1 and θ2, and the estimators θ̂1 = X̄1 and θ̂2 = X̄2, we approximately have

θ̂1 − θ̂2 ∼ N
(
θ1 − θ2,

θ1(1− θ1)

n1

+
θ2(1− θ2)

n2

)
The null hypothesis H0 : θ1 − θ2 = θd can be tested by comparing

θ̂1 − θ̂2 − θd√
θ̂1(1−θ̂1)

n1
+ θ̂2(1−θ̂2)

n2

8The set formalism is relaxed for ease of notation – the RHS is in fact a set.



CHAPTER 1. SOME BASICS IN CLASSICAL STATISTICS 19

against suitable critical values, depending on H1. Approximate confidence intervals derived
from the above statistic will be consistent with those tests.

When H0 : θ1− θ2 = 0 is to be tested, an alternative approach is to observe that, when
θ1 = θ2 = θ, we have

θ̂1 − θ̂2 ∼ N
(

0, θ(1− θ)
(

1

n1

+
1

n2

))
Based on that, we can estimate the common success probability as θ̂ = Y1+Y2

n1+n2
and use the

test statistic
θ̂1 − θ̂2√

θ̂(1− θ̂)
(

1
n1

+ 1
n2

)
whose approximate distribution is N (0, 1) under the null hypothesis.



Chapter 2

The Analysis of Variance

Analysis of variance (ANOVA) is a collection of statistical models and their associated
estimation procedures (such as the “variation” among and between groups) used to analyze
the differences among group means in a sample.

A The one-way layout

A.1 Setting

We have I treatments, each having ni observations. Let the Xij be the j’th observation in
the i’th sample. The model for the observations are

Xij = µ+ ai + eij, j = 1, . . . , ni, i = 1, . . . , I

Here, µ is the overall mean level, ai is the differential effect of the i’th treatment, normalised
such that

I∑
i=1

niai = 0,

and eij’s are independent random error with a normal distribution N (0, σ2),

eij
i.i.d.∼ N (0, σ2).

The differential effects are normalised, i.e., The i.i.d. assumption ensures that all Xij are
independent and normally distribution with a common variance,

Xij ∼ N (µ+ ai, σ
2), j = 1, . . . , ni; i = 1, . . . , I. (2.1)

The inferential problem: We would like to know if there is any variation in the mean
across the samples. Therefore, we would like to test the null hypothesis

H0 : a1 = a2 = . . . = aI .

Exercise 2.1. Show that, H0 above is equivalent to

H0 : a1 = a2 = . . . = aI = 0.

Denote µi = µ + ai. For I = 2 (two populations), H0 reduces to the hypothesis
H0 : δ = µ1 − µ2 = 0, which was discussed earlier.

20
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A.2 Testing equality of the means in one-way ANOVA

Let n = n1 + . . .+ nI be the total number of observations. Define X̄i = 1
ni

∑ni
j=1 Xij to be

the sample mean of the i’th sample, and X̄ = 1
n

∑I
i=1

∑ni
j=1 Xij to be the overall sample

mean.

Exercise 2.2. Show the basic identity of the analysis of variance

I∑
i=1

ni∑
j=1

(Xij − X̄)2 =
I∑
i=1

ni∑
j=1

(Xij − X̄i)
2 +

I∑
i=1

ni(X̄i − X̄)2. (2.2)

[Hint: For each term of the LHS, apply Xij − X̄ = (Xij − X̄i) + (X̄i − X̄), and show that
the third terms of the expansion sum to 0.]

Equation (2.2) suggests that the total sum of errors is equal to the sum of squares
within groups plus the sum of squares between groups. We write (2.2) according to this
interpretation

SStotal = SSw + SSb.

where

SStotal =
I∑
i=1

ni∑
j=1

(Xij − X̄)2, SSw =
I∑
i=1

ni∑
j=1

(Xij − X̄i)
2, SSb =

I∑
i=1

ni(X̄i − X̄)2.

Theorem 2.1. Functions of independent random vectors are also independent. That is, if
X = (X1, . . . , Xp) and Y = (Y1, . . . , Yq) are independent real-valued random vectors, then,
for any f : Rp 7→ Rp′ and g : Rq 7→ Rq′, f(X) and g(Y ) are also independent.

Exercise 2.3. Show that SSw and SSb are independent.

Exercise 2.4. Show that

E(SStotal) = (n− 1)σ2 +
I∑
i=1

nia
2
i

E(SSw) = (n− I)σ2

E(SSb) = (I − 1)σ2 +
I∑
i=1

nia
2
i

As stated in the last exercise, the total error will be inflated by non-zero ai’s. In the
same manner, we expect that the SSb/SSw gets larger when the model deviates from H0.
Indeed, the likelihood ratio test confirms this intuition and yields an F test for H0.

Exercise 2.5. Show the following

(a) SSw
σ2 ∼ χ2

n−I .
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(b) Under H0, SStotal
σ2 ∼ χ2

n−1, SSb
σ2 ∼ χ2

I−1, E(SSb) = (I − 1)σ2, and

SSb/(I − 1)

SSw/(n− I)
∼ fI−1,n−I

Exercise 2.6. Assume (2.2). Show that the likelihood ratio test for

H0 : a1 = a2 = . . . = aI = 0, vs H1 : At least one ai is non-zero.

is an F -test, with the critical region of size α given by

C =

{
ssb/(I − 1)

ssw/(n− I)
> fα,I−1,n−I

}
A typical one-way ANOVA table, which summarises the analysis necessary for the basic

ANOVA null hypothesis, is given below.

Source df SS MS F

Between groups I − 1 ssb ssb/(I − 1) ssb/(I−1)
ssw/(n−I)

Within groups n− I ssw ssw/(n− I)
Total n− 1 sstotal

A.3 Contrasts

Instead of testing the equality of the means, we can be more specific and test a linear
combination of the means. Consider any vector of constants c1, . . . , cI , let us say we are
interested in

∑I
i=1 ciµi. Under the ANOVA setting, we have∑I

i=1 ciX̄i −
∑I

i=1 ciµi

σ
√∑I

i=1
c2i
ni

∼ N (0, 1),

∑I
i=1 ciX̄i −

∑I
i=1 ciµi√

SSw
n−I

∑I
i=1

c2i
ni

∼ tn−I .

Therefore, confidence intervals and hypothesis tests about
∑I

i=1 ciµi are available. A

100(1− α)%-level CI for
∑I

i=1 ciµi is given by I∑
i=1

ciX̄i − tα/2,n−I

√√√√ SSw
n− I

I∑
i=1

c2
i

ni
,

I∑
i=1

ciX̄i + tα/2,n−I

√√√√ SSw
n− I

I∑
i=1

c2
i

ni

 (2.3)

One family of hypotheses involving the means of groups is in terms of contrasts. Con-
trasts are important since they formalize more detailed, or specific, comparisons among
the means.

Definition 2.1 (Contrast). A linear combination of the means
∑I

i=1 ciµi is called a con-

trast if the vector of coefficients c = (c1, . . . , cI) satisfies
∑I

i=1 ci = 0.
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Let the vector of coefficients c = (c1, . . . , cI) leading to a contrast be called a contrast
vector. Due to the constraint of summing to 0, the set of all contrast vectors

C =

{
(c1, . . . , cI) :

I∑
i=1

ci = 0

}

has dimension I − 1, i.e., it is spanned by I − 1 linearly independent vectors whose coeffi-
cients sum to 0. In other words, any contrast vector can be written as a linear combination
of I − 1 linearly independent contrast vectors. A set of contrast vectors that span C is

c1 = (1,−1, 0, . . . , 0), c2 = (0, 1,−1, 0, . . . , 0), cI−1 = (0, . . . , 0,−1, 1). (2.4)

(You can think of them as the ‘basis vectors’ for the space of contrast vectors, in analogy
to the basis vectors (1, 0, . . . , 0), . . . , (0, . . . , 0, 1) that span RI .)

Contrasts are important due to the null hypotheses they correspond to. Given c ∈ C,
let us consider the corresponding null hypothesis

H0 :
I∑
i=1

ciµi = 0, H1 :
I∑
i=1

ciµi 6= 0

Then, for the unit basis contrasts in (2.4), the corresponding null hypotheses in the same
manner are

c1 ⇒ µ1 = µ2, c2 ⇒ µ2 = µ3, . . . cI−1 ⇒ µI−1 = µI .

Therefore, the combination of all the null hypotheses above leads to the ANOVA null
hypothesis that states that all the means are equal,

c1, . . . , cI−1 ⇒ µ1 = µ2 = . . . = µI

One can show that the null ANOVA hypothesis is equivalent to saying that all linear
combinations of the means by contrasts are 0, as stated in the following exercise.

Exercise 2.7. Show that, µ1 = µ2 = . . . = µI if and only if
∑

i=1 ciµi = 0 for all
c = (c1, . . . , cI) ∈ C. [Hint: To show ⇐, use the contrasts in (2.4)]

An immediate consequence is that the ANOVA null and alternative hypotheses can be
written as

H0 :
I∑
i=1

ciµi = 0, for all c ∈ C, H1 :
I∑
i=1

ciµi 6= 0, for some c ∈ C.

One reason contrasts are useful for analysis is that they are interesting on their own,
being natural hypotheses to test: Pairwise comparisons between means (such as µ1 vs µ2),
or comparison between averages of two sets of means (such as µ1 vs µ2+µ3

2
, or µ1+µ2

2
vs

µ3+µ4+µ5
3

).
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Second, we will see later that, it is possible to design simultaneous confidence intervals
that hold for all contrasts with probability 1−α. Those confidence intervals are narrower
than the confidence intervals for arbitrary linear combinations of the means, see Section
B.2.4.

Finally, there is a systematic way of decomposing SSb into smaller pieces (called con-
trast sum of squares) using what we will call orthogonal contrasts.

A.3.1 Orthogonal contrasts

Assume we want to test a set of multiple contrasts. Things get more interesting when
those contrasts are orthogonal.

Definition 2.2 (Inner product and norm). Given two vectors v, u ∈ RI and n1, . . . , nI > 0,
define the inner product

〈u, v〉 =
I∑
i=1

uivi
ni

.

Moreover, given a vector v, we define ‖v‖ = 〈v, v〉1/2 as the norm of v.

Definition 2.3 (Orthogonality and orthonormality). Vectors v, u are said to be orthogonal
if 〈u, v〉 = 0. If, in addition, ‖v‖ = ‖u‖ = 1, then v, u are said to be orthonormal.

Definition 2.4. In particular, two contrasts constructed by c1, c2 ∈ C are said to be
orthogonal if

∑I
i=1

c1,ic2,i
ni

= 0.

Exercise 2.8 (Orthogonal contrasts are independent). Orthogonal contrasts are indepen-
dent, that is, given c1 and c2 such that

∑I
i=1

c1,ic2,i
ni

= 0, the contrasts
∑I

i=1 c1,iX̄i and∑I
i=1 c2,iX̄i are uncorrelated, hence independent.

Definition 2.5 (Orthonormal basis). A set of vectors {v1, . . . , vI} form an orthonormal
basis if

〈vi, vj〉 =

{
1, if i = j

0, if i 6= j
.

Exercise 2.9. Show that the size of a set of orthogonal contrasts can be at most I − 1.

Orthogonal contrasts enable a perfect decomposition of SSb. This enables writing the
test statistic of the ANOVA null hypotheses (all means are equal) as the average of the
test statistics of those contrasts.

Let Y = (n1X̄1, . . . , nIX̄I). Given c = (c1, . . . , cI), let

SSc =
〈Y, c〉2

〈c, c〉
=

(
c1X̄1 + . . .+ cIX̄I

)2

c21
n1

+ . . .+
c2I
nI
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Theorem 2.2 (Contrasts split SSb perfectly). Suppose {c1, . . . , cI−1} is set of I − 1 or-
thogonal contrast vectors. Then, SSc1 , . . . , SScI−1

are independent and split SSb perfectly,
i.e.,

I−1∑
i=1

SSci = SSb

Independence is a direct implication of Exercise 2.8. The proof of the Theorem 2.2 is
designed as Exercise 2.10.

Exercise 2.10. By following the steps below, prove Theorem 2.2

(a) Show that c0 = (n1, . . . , nI), SSc0 = NX̄2.

(b) Show that ‖Y ‖2 =
∑I

i=1 niX̄
2
i .

(c) Let {c1, . . . , cI−1} be a set of orthogonal contrasts and let c0 = (n1, . . . , nI). Then,
show that {c0, c1, . . . , cI−1} is a set of mutually orthogonal vectors. Furthermore,
show that {

c0

‖c0‖
,

c1

‖c1‖
, . . . ,

cI−1

‖cI−1‖

}
(2.5)

form an orthonormal basis.

(d) Let x ∈ RI and {v1, . . . , vI} form an orthonormal basis. Then x can be written as
x = 〈v1, x〉v1 + . . .+ 〈vI , x〉vI and therefore ‖x‖2 = 〈v1, x〉2 + . . .+ 〈vI , x〉2.

Apply the result above with the orthonormal basis in (2.5) to show that

‖Y ‖2 = nX̄2 +
I−1∑
i=1

SSci

(e) Show that
∑I

i=1 niX̄
2
i − nX̄2 =

∑I
i=1 ni(X̄i − X̄)2 = SSb.

(f) Finally, show that
∑I−1

i=1 SSci = SSb.

Another advantage of orthogonal contrasts is, that due to their independence, they
help reduce the overall type I error (more formal definitions to come soon). We will see
that in more detail in Section B.2.2, see Exercise 2.16.

B Multiple hypotheses

Let H01, . . . , H0m be a set, or a family, of m null hypotheses and

H0 = H01 ∩H02 ∩ . . . ∩H0m

be the “combined”, “overall”, or “intersection” null hypothesis, which is true when all H0i

are true. During the analysis in this section, we will assume that the hypotheses do not
contradict altogether, i.e., their intersection is not empty.
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Table 2.1: Table of number of outcomes in multiple hypotheses setting
Null hypothesis is true Null hypothesis is false Total

Hypothesis rejected V S R
Hypothesis not rejected U T m−R

Total m0 m−m0 m

Assumption 2.1. H0 is non-empty.

A table of numbers of outcomes in multiple hypotheses setting is given in Table 2.1. As
can be seen from the table, we assume the general setting where some hypotheses are true
and some are false. In practice, the knowledge of which hypotheses are true and which are
false is not available, which renders the random variables V , S, U , T unobservable. On
the contrary, the random variable R is observable at the end of the experiment. It is this
general setting for which several type-I error rates are defined. Also, let

J = {j1, . . . , jm0} ⊆ {1, . . . ,m}

be the indices of the null hypotheses that are true. Moreover, since every hypothesis
corresponds to a set a certain parameter vector is claimed to reside, we can define Θj to
be that set for H0j.

Note that, for a true hypothesis Hj with j ∈ J , which corresponds to the set Θj, we
have that θ ∈ Θj holds.

Remark 2.1. In the frequentist setting, the variable θ is a static parameter vector whose
value is fixed and unknown. It is also a common practice to use θ as a dummy variable in
some definitions. For example, see the definition of the power function in Section C.1 in
Chapter 1, where θ is used as the argument of the power function. While this use of θ may
help with getting increasing the familiarity of the reader to certain concepts, it may also
be a source of possible confusion in the discussion to follow in this chapter. To avoid such
confusion, we will sometimes use a different symbol, such as ϑ for the dummy variables for
θ.

Remark 2.2. In the discussion, we will introduce some error rates, all of which regard the
type I error probabilities. As we saw earlier, it was not always possible to talk about a
single type I error under a null hypothesis, and that is why we generalised the definition
of the size of the test with a null hypothesis H0 : θ ∈ Θ0 as

sup
ϑ∈Θ0

P (reject H0|θ = ϑ).

where the event {Reject H0} is defined as {X1:n ∈ C} and the conditioned event {θ = ϑ}
is equivalent to {the true value of the parameter θ is ϑ}. However, for the discussions to
come, it is convenient to suppose that the type I error probability is same for all θ ∈ Θ0

P (Reject H0|θ = ϑ) = α, ∀ϑ ∈ Θ0.
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the size of the test is simply α. In fact, only in such cases writing P (Reject H0|H0) makes
sense and it means

{P (Reject H0|H0) = α} ⇔ {P (Reject H0|θ = ϑ) = α, ∀ϑ ∈ Θ0}

In general we can make the following definition.

Definition 2.6 (Probabilities conditional on a hypothesis). For any event A, a conditional
probability P (A|H), where the condition is a hypothesis H : θ ∈ ΘH is well defined and is
equal to p ∈ (0, 1) if P (A|θ = ϑ) is the same for all ϑ ∈ ΘH and equal to p.

In the following, we will assume that such probabilities, whenever they are mentioned,
are well defined in the sense of Definition 2.6.

B.1 Error rates regarding multiple hypotheses

We define several useful error rates regarding multiple hypothesis testing. When a proba-
bility or expectation is stated as P (·) or E(·) regarding the test statistics or the outcomes
of the hypothesis tests, the implicit conditioning on the true (and unknown) value of θ
should be assumed.

Definition 2.7 (Per comparison error rate). The per comparison error rate (PCER), or
the comparison-wise error rate, is related to the probability of rejecting a particular H0i

when H0i is true. PCER is defined as

PCER = E(V/m).

Controlling PCER at α means that the PCER is at most α when all the hypotheses are
true.

It is common knowledge that testing each hypothesis with a type I error probability of
α guarantees that PCER ≤ α. However, it is worth proving it rigorously to gain a deep
insight into the setting.

Exercise 2.11. Suppose that we test each null hypotheses such that P (reject H0j|H0j) =
α. Then, E(V/m) ≤ α.

Proof. Take any j ∈ J , where J is the set of indices of the true hypotheses. We are given
P (reject H0j|H0j) = α, which means that

P (reject H0j|θ = ϑ) = α, ∀ϑ ∈ Θ0j

by Definition 2.6. But, since H0j is a true hypothesis, we have θ ∈ Θ0j, which implies that

P (reject H0j) = α.
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Since V =
∑

j∈J I(reject H0j), we can write the expectation

E(V/m) =
1

m

∑
j∈J

E(I(reject H0j)) =
1

m

∑
j∈J

P (reject H0j) =
m0

m
α.

By taking m0 = m, i.e., all hypotheses are true, we show that PCER is controlled by α
error for each test.

Definition 2.8 (Familywise error rate). The familywise error rate or per experiment error
rate or experiment wise error rate is the probability of falsely rejecting at least one true
null hypothesis, i.e., it is defined as

FWER = P (V ≥ 1).

Controlling FWER in a weak sense at α means that the FWER is at most α when all the
hypotheses are true, i.e., P (reject at least one null hypothesis|H0 is true) = α.

Controlling FWER is a strong sense (S-FWER) means that FWER is at most α for
every combination of true/false hypotheses.

Definition 2.9 (Discovery and false discovery). A statistical discovery is the rejection of
an H0i. A false discovery is the rejection of an H0i when H0i is true.

Definition 2.10 (False discovery rate). The false discovery rate is the expected number
of falsely rejected hypotheses divided by the total number of rejected hypotheses.

FDR = E(Q), Q =

{
V/R R > 0

0 R = 0
.

Exercise 2.12. Show that, FDR ≤ FWER, with equality when m0 = m, i.e., all null
hypotheses are true.

Proof. Noting that Q ≤ 1 always holds, and that Q > 0 if and only if V ≥ 1, we have

FDR = E(Q) ≤ 1× P (Q > 0)︸ ︷︷ ︸
Q≤1

+0× P (Q = 0)

= P (V ≥ 1) = FWER.

When m = m0, we have V = R and Q = 1 if and only if R = V ≥ 1 and Q = 0 if and
only if R = V = 0. Therefore E(Q) = P (Q = 1) = P (V > 0) = FWER.

B.2 Methods for controlling FWER

In the following, we will cover some of the methods to control FWER.
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B.2.1 Bonferroni correction:

The Bonferroni correction method stems from a general lower bound on the probability of
the intersection of sets. Generally, for sets B1, . . . , Bm,

P

(
m⋃
j=1

Bj

)
≤

m∑
j=1

P (Bj).

Therefore, in order to have at most α probability for
⋃m
j=1Bj each Bj can be set to have

probability α/m.
When applied to multiple hypotheses, the Bonferroni method guarantees the desired

FWER.

Theorem 2.3. When each test is applied with α/m type I error, then the FWER is guar-
anteed in the strong sense to be less than or equal to α.

Proof. Define Bj = {rejection of H0j}. We are interested in the probability

P (V ≥ 1) = P

(⋃
j∈J0

Bj

)

Using the Bonferroni correction, we can bound this probability as

P

(⋃
j∈J0

Bj

)
≤
∑
j∈J0

P (Bj)

=
∑
j∈J0

α/m = α
m0

m
≤ α,

where the second line follows from the fact that θ ∈ Θ0j for all j ∈ J and therefore the
rejection probabilities are α/m.

An obvious corollary to the above result is that one can choose αj for the type I error
of the test for H0j differently provided that

∑m
j=1 αj ≤ α.

B.2.2 S̆idák correction

We call a set of tests independent if their decisions, when viewed as random variables, are
independent random variables. When we have m independent tests, each having α0 type
I error, the probability of making no false rejections, i.e., P (V = 0), can be written as
(recalling the number of true null hypotheses is m0 ≤ m)

P (V = 0) = (1− α0)m0 ,

which yields
FWER = P (V ≥ 1) = 1− (1− α0)m0 ≤ 1− (1− α0)m.
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To bound the last expression by the desired FWER, α, one can take

α0 = 1− (1− α)1/m

Setting α0 for each test as above is known as the S̆idák correction.
When the tests are independent, as we assumed above, α0 provided by S̆idák correc-

tion is tight. However, we can show that FWER can still be controlled at α with S̆idák
correction if we have

P (D1 = i, . . . , Dm = i) ≥
m∏
j=1

P (Dj = i), for each i = 0, 1. (2.6)

where D1, . . . , Dm ∈ {0, 1} be the decisions of the m tests, with Dj = 1 resembles rejection
of H0j so that P (Dj = 1|H0j) = α0. An interpretation of (2.6) is that, given that a
true hypotheses is rejected (accepted), it is more likely to reject (accept) another true
hypothesis.

Exercise 2.13. Show that, if (2.6) holds, we have P (V ≥ 1) ≤ α.

The condition (2.6) being satisfied is usually referred to as the existence of positive
dependence among the tests. There are some formal relations among random variables
which imply (2.6). One such relation is associatedness among the random variables.

Definition 2.11 (Positive association). We say that random variables X1, . . . , Xn are
positively associated if for any non-decreasing functions f and g, we have

Cov(f(X1, . . . , Xn), g(X1, . . . , Xn)) ≥ 0.

provided that the required expectations to define the covariance exist.

It is by the following theorem that associated decisions D1, . . . , Dm satisfy (2.6).

Theorem 2.4. If X1, . . . , Xn are positively associated, then, for all x1, . . . , xn,

P (X1 ≥ x1, . . . , Xn ≥ xn) ≥
n∏
i=1

P (Xi ≥ xi). (2.7)

P (X1 ≤ x1, . . . , Xn ≤ xn) ≥
n∏
i=1

P (Xi ≤ xi). (2.8)

Exercise 2.14. Apply the theorem above to conclude that if D1, . . . , Dm are associated
(2.6) is satisfied.

Associatedness is implied by another relation what is known as positive regression
dependency, another form of ‘positive dependence’ among random variables. Positive
regression dependency is based on increasing sets, which are defined below.
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Definition 2.12 (Increasing set). A set A ∈ E ⊆ Rm is called increasing if, for any
x, y ∈ Rm with ∀i;xi ≤ yi, we have x ∈ A⇒ y ∈ A.

For example, for E = {0, 1}3 the set A = {{0, 0, 1}, {1, 0, 1}, {0, 1, 1}, {1, 1, 1}} is an
increasing set.

Definition 2.13 (Positive regression dependency). Random variables X1, . . . , Xm ∈ X
are said to have positive regression dependency if for any increasing set A ∈ Xm and for
any (j1, . . . , ji) ⊆ {1, . . . ,m}, the probability

P ((X1, . . . , Xm) ∈ A|Xj1 = x1, . . . , Xji = xi)

is increasing in (x1, . . . , xi), i.e., for any x′1 ≥ x1, . . . , x
′
m ≥ xm, we have

P ((X1, . . . , Xm) ∈ A|Xj1 = x1, . . . , Xji = xi) ≤ P ((X1, . . . , Xm) ∈ A|Xj1 = x′1, . . . , Xji = x′i)

Theorem 2.5. Positive regression dependency among X1, . . . , Xn implies positive associ-
ation, hence (2.7).

We say that S̆idák correction is ‘conservative’ for tests satisfying (2.6). For ‘negatively
dependent’ tests (which can be defined by reversing the sign in (2.6)), controlling FWER
at α is not anymore guaranteed, hence we say that S̆idák correction is ‘liberal’.

Beware, though: Pairwise positive correlation among random variables does not imply
positive regression dependency.

Exercise 2.15. Suppose X1, X2 ∈ {0, 1}, with P (X1 = 1) = P (X2 = 1) = ρ > 0,
Cov(X1, X2) > 0 and X3 = X1 + X2. Show that Cov(X1, X3) > 0 and Cov(X2, X3) > 0,
but

P (X1 = 1|X2 = 1, X3 = 1) < P (X1 = 1|X2 = 0, X3 = 1).

How does this violate positive regression dependency?

The above discussion suggests another advantage of using multiple orthogonal contrasts
in the sense of having a reduced type I error.

Exercise 2.16 (Positive dependency among test with orthogonal contrasts). Suppose we
are in the ANOVA setting, and we have I − 1 orthogonal contrasts. By using the indepen-
dence of SSc1 , . . . , SScI−1

(under orthogonality) and SSw, show that the decisions of the
t-tests for those contrasts are positively dependent, in the sense that they satisfy (2.6).

B.2.3 Simultanenous confidence intervals

Recall, again, the duality between confidence intervals and hypothesis tests. Here, we will
dwell on that duality, however with a level of abstraction. The discussion here is provided
to remove possible confusion and learn a general principle which can be applied to clarify
the connection between confidence intervals and hypothesis tests. In particular, the results
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we will have by the end of the discussion here should guide the reader through handling
multiple hypotheses.

As we said earlier, a 100(1−α)% confidence interval for a component of the parameter
vector is an interval whose probability of containing the true value of that component is
1− α. What is crucial in our context is that this CI can be expressed as subset ΘCI ⊆ Θ
of the space of the whole parameter vector, θ. For example, for a sample from the normal
population, a 100(1−α)% confidence interval for the mean parameter µ, when the variance
is unknown, is traditionally written as(

X̄ − tα/2,n−1
S√
n
, X̄ + tα/2,n−1

S√
n

)
While this confidence interval resides in the space of µ, we can convert it to a set for the
whole parameter vector θ = (µ, σ2). The equivalent set in Θ = R× [0,∞) to the confidence
interval given above is

ΘCI
µ =

{
(µ, σ2) ∈ Θ : X̄ − tα/2,n−1

S√
n
≤ µ ≤ X̄ + tα/2,n−1

S√
n

and σ2 > 0

}
Exercise 2.17. Show that P (θ ∈ ΘCI

µ ) = 1− α.

What does this achieve, other than complicating the notation seemingly unnecessarily?
The point here is that every confidence interval corresponds to a subset of Θ. As another
example, the two-sided confidence interval for the variance σ2, which is well known as(

(n− 1)s2

χ2
α/2,n−1

,
(n− 1)s2

χ2
1−α/2,n−1

)
corresponds to

ΘCI
σ2 =

{
(µ, σ2) ∈ Θ : −∞ < µ <∞ and

(n− 1)s2

χ2
α/2,n−1

< σ2 <
(n− 1)s2

χ2
1−α/2,n−1

}
.

What comes to mind after seeing both confidence intervals is providing them as simulta-
neous confidence intervals for (µ, σ2). This is equivalent to providing the set

ΘCI = ΘCI
µ ∩ΘCI

σ2

for θ = (µ, σ2). It is nice to be able to provide simultaneous confidence intervals, however
this comes with a cost. Since {θ ∈ ΘCI} = {θ ∈ ΘCI

µ )} ∩ {θ ∈ ΘCI
σ2)}, with a rough

examination using Bonferroni, we can show that

1− 2α ≤ P (θ ∈ ΘCI) ≤ 1− α. (2.9)

that is, both intervals hold simultaneously with a probability between 1 − 2α and 1 − α,
which is smaller than the 1− α coverage probability for each interval.
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How can we use ΘCI for testing? Recall that every hypothesis about the parameter θ
corresponds to a subset Θ0 ⊆ Θ. In the context of the normal population, examples for
possible hypotheses are H0 : µ = 0, H0 : σ2 > 1, H0 : µ = 2, σ2 = 0, or H0 : g(µ, σ2) = 1
for some function of g. However, to stress once again, whatever the null hypothesis is, it
corresponds to a subset Θ0 for θ = (µ, σ2). Therefore, let us state our null hypothesis as

H0 : θ ∈ Θ0

Given the null hypothesis above, consider the following rejection rule:

Decision =

{
Reject H0 if Θ0 ∩ΘCI = ∅
Do not reject H0 if Θ0 ∩ΘCI 6= ∅

Exercise 2.18. Show that the size of this test is at most 2α.

Proof. From the definition of the size of a test, we have

α = sup
ϑ∈Θ0

P
(

Θ0 ∩ΘCI = ∅
∣∣ θ = ϑ

)
.

≤ sup
ϑ∈Θ0

P
(
θ /∈ ΘCI

∣∣ θ = ϑ
)
.

= 1− inf
ϑ∈Θ0

P
(
θ ∈ ΘCI

∣∣ θ = ϑ
)
.

≤ 2α

where the second line is from the fact that one element of a set not belonging to another
set is more probable than those two sets not intersecting at all, and the last line is by (2.9).
So we conclude.

Let us generalise the discussion above for the normal population to the general setting
where we have several confidence intervals which we want to consider simultaneously and
a set of null hypotheses. Assume we observe random variables whose distributions are in
question, and let θ denote all the parameters of those distributions. Let g1, . . . , gm be any
functions with gi : Θ 7→ R and let ΘCI

i be the set of parameters that corresponds to the
100(1− αi)% level confidence interval CIi ⊆ R for gi(θ). Those sets can be written as

ΘCI
i = {θ ∈ Θ : gi(θ) ∈ CIi}, i = 1, . . . ,m (2.10)

where each gi,min < gi,max ∈ R. Next, define the intersection ΘCI =
⋂m
i=1 ΘCI

i . This will be
the set we will use to decide whether to reject or not reject a null hypothesis. For example,
for a null hypothesis H0 : θ ∈ Θ0, the decision rule

Decision =

{
Reject H0 if Θ0 ∩ΘCI = ∅
Do not reject H0 if Θ0 ∩ΘCI 6= ∅

yields a test of size at most 1 − infϑ∈Θ0 P
(
θ ∈ ΘCI

∣∣ θ = ϑ
)

which can be simplified to
1− P (θ ∈ ΘCI) if the probability in the infimum is the same for all ϑ ∈ Θ0.
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The discussion above is more relevant to our multiple hypotheses framework when we
have multiple null hypotheses. More formally, given H0i : θ ∈ Θ0i, for i = 1, . . . ,m,
consider the decision rule for the i’th hypothesis is

Decision =

{
Reject H0i if Θ0i ∩ΘCI

i = ∅
Do not reject H0i if Θ0i ∩ΘCI

i 6= ∅
(2.11)

Exercise 2.19. Show that, size of the i’th test is αi.

Theorem 2.6. The FWER of the procedure given above is controlled in the strong sense
at α = 1− P (θ ∈ ΘCI).

Proof. From the definition of FWER,

FWER = P (V ≥ 1) = P (∃j ∈ J : Θj ∩ΘCI
j = ∅)

≤ P (∃j ∈ J, θ /∈ ΘCI
j )

= 1− P (θ ∈ ΘCI
j ,∀j ∈ J)

= 1− P

(
θ ∈

⋂
j∈J

ΘCI
j

)

≤ 1− P

(
θ ∈

m⋂
j=1

ΘCI
j

)
= 1− P

(
θ ∈ ΘCI

)
where the second line comes from the facts that θ ∈ Θj holds for all j ∈ J and the
intersection of two sets is a less probable event than an element in one of the sets not
belonging to another.

Typically, the individual hypotheses regard the same functions of the unknown param-
eter g1(θ), . . . , gm(θ) for which we built the confidence intervals. For example, we may have

H01 : g1(θ) = φ1, . . . , H0m : gm(θ) = φm. (2.12)

A different number of hypotheses than the number of confidence intervals is also possible.
The decision rule in (2.11) corresponds to using the i’th confidence interval in (2.10) to
test H0i in (2.12), i.e., rejecting H0i when φi /∈ CIi.

A crude upper bound for α in Theorem 2.6 is, as in the Bonferroni method,
∑m

i=1 αi
or, when the tests are independent or positively correlated, 1 −

∏m
i=1(1 − αi) as in the

Sidak method. However, in some cases, we can show that this α is much less than those
quantities. A well-known instance of that is Scheffe’s method, which we will see below.
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Simultenous confidence intervals for linear combinations: Recall the ANOVA
setting. We are interested in testing linear combinations of the means

∑I
i=1 ciµi. Moreover,

we would like to test those combinations being equal to certain values. As we will see below,
it is possible, in a certain sense, to look at all the linear combinations at once. The following
theorem provides simultaneous confidence intervals with the overall level of 100(1− α)%.

Theorem 2.7 (Scheffe’s theorem for linear combinations). Under the ANOVA setting, for
all µ1, . . . , µI , we have

P

∣∣∣∣∣
I∑
i=1

ciX̄i −
I∑
i=1

ciµi

∣∣∣∣∣ ≤Mα,I,n−I

√√√√ SSw
n− I

I∑
i=1

c2
i

ni
, ∀c1, . . . , cI

 = 1− α. (2.13)

with Mα,I,n−I =
√
Ifα,I,n−I .

We take σ2 away from consideration since it is not a parameter of interest in the one-
way ANOVA setting and therefore define θ = (µ1, . . . , µI). The probability in Theorem
2.7 can also be rewritten as P (θ ∈ ΘCI) = 1− α where

ΘCI =

(µ1, . . . , µI) :

∣∣∣∣∣
I∑
i=1

ciX̄i −
I∑
i=1

ciµi

∣∣∣∣∣ ≤Mα,I,n−I

√√√√ SSw
n− I

I∑
i=1

c2
i

ni
, ∀c1 . . . , cI

 .

Theorem 2.7 can be used for testing multiple hypotheses. Consider the following set of
hypothesis tests

H0j :
I∑
i=1

cj,iµi = φj vs H1j :
I∑
i=1

cj,iµi 6= φj, j = 1, . . . ,m. (2.14)

so that Θ0j = {(µ1, . . . , µI) :
∑I

i=1 cj,iµi = φj}, provided that H0 =
⋂m
i=1 H0i is non-empty.

Define the individual confidence intervals, implied by ΘCI, for those linear combinations

CIj =

 I∑
i=1

cj,iX̄i −Mα,I,n−I

√√√√ SSw
n− I

I∑
i=1

c2
j,i

ni
,

I∑
i=1

cj,iX̄i +Mα,I,n−I

√√√√ SSw
n− I

I∑
i=1

c2
j,i

ni


and the corresponding sets of θ as ΘCI

j = {(µ1, . . . , µI) :
∑I

i=1 cj,iµi ∈ CIj}.

Exercise 2.20. For the hypothesis tests in (2.14) and the confidence intervals that follow
(2.14), show the following.

(a) ΘCI
j ∩Θ0j = ∅ if and only if φj /∈ CIj.

(b) For any m ≥ 1, we have ΘCI ⊆
⋂m
j=1 ΘCI

j .
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(c) if each linear combination is tested according to the testing procedure

Decision =

{
Reject H0j if φj /∈ CIj

Do not reject H0j if φj ∈ CIj
(2.15)

in (2.15) controls FWER with α in the strong sense.

Exercise 2.21. Consider the testing procedure given in (2.15) for each null hypothesis in
(2.14). Show the following results.

(a) For each individual test for H0j :
∑I

i=1 cj,iµi = φj, the critical region of the t-test of
size α for H0j covers the critical region of the decision rule in (2.15), i.e., the latter is a
subset of the former. Use the fact that for any α, I, and ν, we have tα/2,ν ≤

√
Ifα,I,ν .

(b) The type I error for each test in (2.15) is less than α.

(c) Therefore, each test is less powerful than the t-test of size α for the same null hy-
pothesis.

B.2.4 Back to contrasts

If we confine the interest linear combinations to only contrasts, we can find narrower
simultaneous confidence intervals. Scheffe’s method for contrasts is based on the following
theorem.

Theorem 2.8 (Scheffe’s theorem for contrasts). Under the ANOVA setting, for all µ1, . . . , µI ,
we have

P

∣∣∣∣∣
I∑
i=1

ciX̄i −
I∑
i=1

ciµi

∣∣∣∣∣ ≤Mα,I−1,n−I

√√√√ SSw
n− I

I∑
i=1

c2
i

ni
, ∀(c1, . . . , cI) ∈ C

 = 1− α.

(2.16)
with Mα,I−1,n−I =

√
(I − 1)fα,I−1,n−I .

Contrast the expression in (2.16) with that in (2.13), the difference is between the
constants Mα,I−1,n−I and Mα,I,n−I , respectively. We can show that the former is always
smaller. This is the result of a more general fact about stochastic order.

Definition 2.14. A random variable X is said to be less than Y in the stochastic order,
shown by X � Y , if

P (X > a) ≤ P (Y > a), ∀a ∈ R.

If the inequality is strict, then the ordering is also strict and we write X ≺ Y .

The definition is invariant to the joint distribution of X and Y , it only depends on
the marginal probability distributions of X and Y . Therefore, we really talk about the
stochastic order between two distributions.
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Exercise 2.22. Suppose that, X � Y . Let U , and V be any pair of random variables
such that U and X have the same distribution, and V and Y have the same distribution.
Then, U � V also.

Theorem 2.9. Given ν, let Fk ∼ fk,ν. Then, kFk is stochastically increasing, that is,
(k − 1)Fk−1 ≺ kFk.

Proof. Let X ∼ χ2
k−1, Y ∼ χ2

1, and Z ∼ χ2
ν and X, Y , Z be independent. Define

Fk−1 = X/(k−1)
Z/ν

and Fk = (X+Y )/k
Z/ν

, so that Fk−1 ∼ fk−1,ν and Fk ∼ fk,ν . Then kFk =
X+Y
Z/ν

> X
Z/ν

= (k − 1)Fk−1. This shows that kFk is stochastically increasing, and the
validity of the result is independent from how Fk’s are constructed.

Exercise 2.23. Show that kfα,k,ν > (k − 1)fα,k−1,ν .

Proof. Notice that P ((k − 1)Fk−1 > (k − 1)fα,k−1,ν) = P (kFk > kfα,k,ν) = α. But since
(k − 1)Fk−1 ≺ kFk, we have

P ((k − 1)Fk−1 > kfα,k,ν) < P (kFk > kfα,k,ν).

Finally, by monotonicity of the cdf, we must have (k − 1)fα,k−1,ν < kfα,k,ν

Exercise 2.24. Apply the result of Exercise 2.23 to show that

t2α/2,n−I ≤ (I − 1)fα,I−1,n−I ≤ Ifα,I,n−I .

(Hint: Show that t2α/2,n−I = fα,1,n−I). Therefore, conclude that, with significance levels

being equal, the confidence interval for a single linear combination in (2.3) is narrower than
the simultaneous Scheffe’s interval for all contrasts, which is narrower than the simultane-
ous Scheffe’s intervals for all linear combinations.

Tukey’s method for pairwise contrasts: An even smaller family of linear combina-
tions is the family of pairwise comparisons, of the form µi−µj for i 6= j. When we confine
ourselves to pairwise comparisons, we can get even narrower simultaneous confidence in-
tervals with the same 1 − α probability. Those simultaneous confidence intervals are due
to Tukey.

Theorem 2.10 (Distribution of maximum difference). Under the ANOVA setting with
equal group sizes n1 = n2 = . . . = nI , the statistic

max
i,j

X̄i − X̄j

follows a Studentized range distribution qI,n−I with I populations and n − I degrees of
freedom.

The critical values of a Studentized range distribution qI,ν at α is shown by qα,I,ν and
is tabulated.
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Exercise 2.25. Show that maxi,j |X̄i − X̄j| < c if and only if |X̄i − X̄j| < c for all i 6= j.

Theorem 2.10 and the observation in Exercise 2.25 lead to the following simultaneous
confidence intervals for pairwise differences

Theorem 2.11. Tukey confidence intervals for pairwise differences Under the ANOVA
setting with equal group sizes n1 = n2 = . . . = nI = n∗, we have, for all µ1, . . . , µI ,

P

(∣∣X̄i − X̄j − (µi − µj)
∣∣ ≤ qα,I,n−I√

2

√
SSw
n− I

2

n∗
, ∀i 6= j

)
= 1− α. (2.17)

where qα,I,n−I is the critical value at α of the Studentized range distribution with I popula-
tions and n− I degrees of freedom. Therefore, we have P (θ ∈ ΘCI) = 1− α, where

ΘCI =

{
(µ1, . . . , µI) :

∣∣X̄i − X̄j − (µi − µj)
∣∣ ≤ qα,I,n−I√

2

√
SSw
n− I

2

n∗
, ∀i 6= j

}

For the individual comparison between µi and µj the simultaneous confidence interval
is

CIi,j =

(
X̄i − X̄j −

qα,I,n−I√
2

√
SSw
n− I

2

n∗
, X̄i − X̄j +

qα,I,n−I√
2

√
SSw
n− I

2

n∗

)
The use of Tukey’s confidence interval is justified by the following theorem:

Theorem 2.12. For all α, I and ν, we have qα,I,n−I/
√

2 < Mα,I−1,n−I .

Data snooping: So far, all the tests we have discussed are planned experiments. A
planned experiment is designed before looking at the data. In contrast to a planned
experiment, there are post hoc experiments which are conducted after looking at the data.
This is called ‘data snooping’, which introduces errors in the experiments if one is not
careful. To understand the potential drawback of data snooping, consider the ANOVA
setting where we are particularly interested in pairwise comparisons. For each pairwise
comparison, we have a hypothesis test available whose type I error is α. For example, for
H0 : µi = µj, a suitable test statistic is

X̄i − X̄j√
SSw
n−I

(
1
ni

+ 1
nj

) ∼ tn−I

Suppose that we are also committed to use the critical value tα/2,n−I for testing, i.e., the
critical region {|tobs| > tα/2,n−I}. Now, consider two different scenarios:

• In the first scenario, we decide to compare µ2 and µ3 before looking at the data.
Then, we collect the data and perform our test above for H0 : µ2 = µ3. The type I
error we commit in this case is simply α.
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• In the second scenario, we look at the data, find the pair (i∗, j∗) such that X̄i − X̄j

is maximised at i = i∗, j = j∗, and then decided to test the null hypothesis that
H0 : µi = µj by using the same test statistic above. The error of this test is higher
than α, since the actual test statistic of this procedure corresponds to

max
i,j

X̄i − X̄j√
SSw
n−I

(
1
ni

+ 1
nj

) ,
which has a higher probability (than α) of exceeding tα/2,n−I under the null hypothesis
of equal means. Therefore, applying the same test procedure for a hypothesis after
looking at the data can be misleading.

Exercise 2.26. Why do not we have absolute values of the test statistic in the discussion
above?

Now that the danger of data snooping is (hopefully) clear, let us consider a new test
procedure that can handle multiple hypotheses and give reliable results even under data
snooping. Continuing with the same example, we wish to find a critical value kα such that

P

max
i,j

X̄i − X̄j√
SSw
n−I

(
1
ni

+ 1
nj

) > kα

 = α.

under the null hypothesis µ1 = . . . = µI . Notice that the condition that the maximum
difference be larger than a value can also be written as all of the pairwise differences being
larger than that value, in particular,

max
i,j

X̄i − X̄j√
SSw
n−I

(
1
ni

+ 1
nj

) > kα ⇔
X̄i − X̄j√

SSw
n−I

(
1
ni

+ 1
nj

) > kα for all i, j.

This kα is provided by Scheffe’s method and by Tukey’s method when group sizes are equal.
Using them, we can test all the hypotheses of the form µi = µj at the same time with
an overall type I error of α. Therefore, we have seen another advantage of simultaneous
confidence intervals: We can use them to data snoop safely. For another example, similarly
to pairwise comparisons, one can be interested in testing the linear combination

∑I
i=1 ciµi

being equal to 0 or not for which ∑I
i=1 ciX̄i√

SSw
n−I

∑I
i=1

c2i
ni

is maximised, and the theorem for linear combinations suggests that this can be done
safely.
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Exercise 2.27. Suppose we are in the one way ANOVA setting with I = 5, with ni =
7 for all i = 1, . . . , 5 so that n = 35. We are supposed to test m ≥ 1 different null
hypotheses, each claiming a different linear combination being equal to 0. We want the
FWER controlled at α = 0.05, however keeping the power of each test as big as possible.

Consider two methods for controlling FWER: (i) Bonferroni correction along with a
t-test, and (ii) one that uses simultaneous confidence intervals based on Scheffe’s theorem
for linear combinations, i.e., Theorem 2.7.

Which method would you prefer to use and how would your choice depend on m? Make
a numerical study, and report your answer for m = 1, 2, . . . , 100. (For example, make a
plot.) [Hint: Remember the duality between confidence intervals and hypothesis tests, and
that a wider confidence interval implies a less powerful test.]

Exercise 2.28. Do Exercise 2.27 again, but this time instead of linear combinations in
general we are only interested in contrasts. (Hence you should consider Scheffe’s theorem
for contrasts for the second method in (ii).)

Exercise 2.29. Do Exercise 2.27 again, but this time instead of linear combinations in
general we are only interested in pairwise comparisons. (Hence you should consider Tukey’s
theorem for pairwise comparisons for the second method in (ii).) Also, limit the range of
m values to m = 1, . . . , 10. (Why?)

Exercise 2.30. To asses the relative effects of three toxins and a control on the liver of
a certain species of trout, the amounts of deterioration (in standard units) of the liver in
each sacrificed fish are measured and the data are shown in the following the table.

Toxin 1 Toxin 2 Toxin 3 Control
28 33 18 11
23 36 21 14
14 34 20 11
27 29 22 16

31 24
24

Let µi be the mean effect of the toxins (i = 1, 2, 3) and the control (i = 4).

(a) Test the basic ANOVA null hypothesis H0 : µ1 = µ2 = µ3 = µ4 against H1 :
not all means are equal with a significance level of α = 0.1.

(b) Provide a simultaneous 100(1 − α)% confidence interval for all pairwise differences,
with α = 0.1. Do your best to make CI be as narrow as possible. (Why do we
desire narrower confidence intervals with the same confidence level?) Indicate which
method you use to build the confidence interval.

(c) This time we want to test the following hypotheses altogether:

• H01 : µ1 = µ4 vs H11 : µ1 6= µ4.

• H02 : µ2 = µ4 vs H12 : µ2 6= µ4.
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• H03 : µ3 = µ4 vs H13 : µ3 6= µ4.

• H04 : µ1+µ2+µ3
3

= µ4 vs H14 : µ1+µ2+µ3
3

6= µ4.

(i) Show that all of the linear combinations in the null hypotheses are contrasts.

(ii) Conduct those hypotheses tests while controlling the FWER at α = 0.1 by using
the Bonferroni method.

(iii) Conduct those hypotheses tests while controlling the FWER at α = 0.1 by
making use of simultaneous confidence intervals as discussed in Section B.2.3.

(iv) Compare the tests in the last two parts. Which one do you prefer for this case?

C Two-way layout

This time we have two factors, having I > 1 and J > 1 layers, respectively. For each
combination (i, j) of those factors, we have Kij independent observations. In this section
we will simplify the setting by allowing kij = K for all combinations.

A two-way layout is an experimental design involving two factors, each at two or more
levels. The levels of one factor might be various drugs, for example, and the levels of the
other factor might be sex (J = 2). If there are I levels of one factor and J of the other,
there are I × J combinations. We will assume that K independent observations are taken
for each of these combinations.

Again, we have the normality and independence assumption. The variations along the
first and second factors will be represented by ai and bj, respectively, and the interaction
between the i’th level of the first factor and the j’th level of the second factor will be
represented by δij. The resulting observation model is

Xijk = µ+ ai + bj + δij + εijk, (2.18)

for all i = 1, . . . , I, j = 1, . . . , J , and k = 1, . . . , K, where

εijk
i.i.d.∼ N (0, σ2)

and the differential effects ai and bj, are normalised

I∑
i=1

ai = 0,
J∑
j=1

bj = 0, (2.19)

and the interaction effects are also normalised

J∑
j=1

δij = 0, i = 1, . . . , I;
I∑
i=1

δij = 0, j = 1, . . . , J. (2.20)
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C.1 A motivation: Randomised block design

Blocking is the arranging of experimental units in groups (blocks) in which the member
units are similar to one another. An example of a blocking factor might be the sex of
a patient. Typically, a blocking factor is a source of variability that is not of primary
interest to the experimenter, For example, the primary interest is the effect of a new drug
on patients while the blocking factor is the sex of a patient. By blocking, variability due to
the blocking factor (in this example, sex) is controlled for, thus leading to greater accuracy
(in tests about the effect of the drug).

A nuisance factor is used as a blocking factor if every level of the primary factor occurs
the same number of times with each level of the nuisance factor. The analysis of the
experiment will focus on the effect of varying levels of the primary factor within each block
of the experiment.

Example 2.1. The table below shows a randomized block design for a hypothetical medical
experiment. Subjects are assigned to blocks, based on sex. Then, within each block,
subjects are randomly assigned to treatments (no vaccine, a placebo, or a cold vaccine).

Treatment Male Female
no vaccine X111, . . . , X11K X121, . . . , X12K

placebo X211, . . . , X21K X221, . . . , X22K

vaccine X311, . . . , X31K X321, . . . , X32K

Example 2.2. Randomized block designs originated in agricultural experiments. To com-
pare the effects of I different fertilizers, J relatively homogeneous plots of land, or blocks,
are selected, and each is divided into I plots. Within each block, the assignment of fer-
tilizers to plots is made at random. By comparing fertilizers within blocks, the variability
between blocks, which would otherwise contribute “noise” to the results, is controlled.
This design is a multisample generalization of a matched-pairs design.

Fertilizer Plot 1 . . . Plot J
1
...
I

Example 2.3. Another example of a randomized block design is one used by a nutritionist
who wants to compare the effects of three different diets on experimental animals. To
control for genetic variation in the animals, the nutritionist might select three animals
from each of several litters and randomly determine their assignments to the diets.

The model for a randomized block design may be

Xi,j,k = µ+ ai + bj + εi,j,k, (2.21)

which is a simplification over the general 2-way ANOVA in that δij = 0.
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C.2 Inference

Given observations Xijk = xijk, the log-likelihood function for the parameters µ, ai’s, βj’s,
and δij’s is given by

−IJK
2

log(2πσ2)− 1

2σ2

I∑
i=1

J∑
j=1

K∑
k=1

(xijk − µ− ai − bj − δij)2,

Define the following averages

X̄ij =
1

K

K∑
k=1

Xijk, X̄i. =
1

JK

J∑
j=1

K∑
k=1

Xijk,

X̄.j =
1

IK

I∑
i=1

K∑
k=1

Xijk X̄ =
1

IJK

I∑
i=1

J∑
j=1

K∑
k=1

Xijk

Exercise 2.31. Show that the maximum likelihood estimator for the parameters µ, ai, bj,
δij, under the given constraints in (2.20), are given by

µ̂ = X̄, âi = X̄i. − X̄, b̂j = X̄.j − X̄, δ̂ij = X̄ij − X̄.j − X̄i. + X̄

Exercise 2.32. Show that X̄ij = µ̂+ âi + b̂j + δ̂ij.

Define the sums of squares

SSA = JK
I∑
i=1

(X̄i. − X̄)2

SSB = IK
J∑
j=1

(X̄.j − X̄)2

SSAB = K
I∑
i=1

J∑
j=1

(X̄ij − X̄i. − X̄.j + X̄)2

SSE =
I∑
i=1

J∑
j=1

K∑
k=1

(Xijk − X̄ij)
2

SStotal =
I∑
i=1

J∑
j=1

K∑
k=1

(Xijk − X̄)2

Exercise 2.33. Show that

(a) The sums of squares split the total error

SStotal = SSA + SSB + SSAB + SSE.
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(b) SSA, SSB, SSAB, and SSE are independent.

(c) The sums of squares have the following expectations

E(SSA) = σ2(I − 1) + JK
I∑
i=1

a2
i

E(SSB) = σ2(J − 1) + IK

J∑
j=1

b2
j

E(SSE) = IJ(K − 1)σ2

E(SSAB) = σ2(I − 1)(J − 1) +K
I∑
i=1

J∑
j=1

δ2
ij

Next, we state the distributions of some test statistics used to test certain hypotheses
about the model.

Exercise 2.34. Show that

(a) SSE/σ
2 ∼ χ2

IJ(K−1).

(b) Under H0 : a1 = . . . = aI = 0, we have SSA/σ
2 ∼ χ2

I−1 and therefore

SSA/(I − 1)

SSE/(IJ(K − 1))
∼ fI−1,IJ(K−1)

(c) Under H0 : b1 = . . . = bJ = 0, we have SSB/σ
2 ∼ χ2

J−1 and therefore

SSB/(J − 1)

SSE/(IJ(K − 1))
∼ fJ−1,IJ(K−1)

(d) Under H0 : δij = 0 for all i, j, we have SSAB/σ
2 ∼ χ2

(I−1)(J−1) and therefore

SSAB/((I − 1)(J − 1))

SSE/(IJ(K − 1))
∼ f(I−1)(J−1),IJ(K−1)

[Hint: Look up the addition properties of the non-central chi-square distribution to
derive the distribution of SSAB/σ

2.]

Exercise 2.35. Suppose you want to determine whether the brand of laundry detergent
used and the temperature affects the amount of dirt removed from your laundry. To this
end, you buy two different brands of detergent (“Super” and “Best”) and choose three
different temperature levels (“cold”, “warm”, and “hot”). Then you divide your laundry
randomly into 6×r piles of equal size and assign each group of r piles into the combination
of (“Super” and “Best”) and (“cold”, “warm”, and “hot”).
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(a) Determine the factors and their layers in this experiment.

(b) With r = 4, the amounts of dirt removed when washing sub pile k (k = 1, 2, 3, 4) are
recorded as

Cold Warm Hot
Super 4, 5, 6, 5 7, 9, 8, 12 10, 12, 11, 19
Best 6, 6, 4, 4 13, 15, 12, 12 12, 13, 10, 13

Using the data in the table, fill in the following table by replacing expressions with
actual numbers. (Note: MS = SS/degrees of freedom)

Source degrees of freedom SS MS F
A I − 1 SSA MSA MSA/MSE
B J − 1 SSB MSB MSB/MSE

A×B (I − 1)(J − 1) SSAB MSAB MSAB/MSE
within IJ(K − 1) SSE MSE
Total IJK − 1 SStotal

(c) Test the null hypothesis at α = 0.1 that the amount of dirt removed does not depend
on the type of detergent.

(d) Find a 100(1 − α)% confidence interval for the difference between the means of the
amount of dirt removed with detergents Super and Best.

(e) Test the null hypothesis at α = 0.1 that the amount of dirt removed does not depend
on the temperature.



Chapter 3

Linear Regression

In this chapter, we discuss a basic model for analysis of multivariate data, the linear
regression model. Regression models are used to model the dependence between a random
variable, which can be treated as responses, and some other variables, which can be treated
as predictor variables, when that dependence is believed to be in a linear fashion. We start
with the simple linear regression model, where there is a single predictor variable, and
continue with the multiple linear regression model, which has multiple predictor variables.
In both models, simple and multiple, we reserve a detailed discussion of the inferential
properties under normality assumptions.

A Simple linear regression

In cases where simple linear regression is of consideration, one has a collection of pairs of
numbers

(x1, y1), . . . , (xn, yn)

which are simply points on the x− y plane. Linear regression models are examples where
a functional dependence of one variable on another is assumed (or sought, as far as testing
is concerned). The analysis required to study this functional dependence depends on the
nature of (xi, yi). However, as long as simple linear regression is concerned, this functional
dependency can generally be written as

yi = a+ bxi + ei, (3.1)

regardless of the assumptions that underlie generation of (xi, yi)’s. Here, y = a+ bx stands
for the functional dependency and ei is the amount of deviation from the exact relationship
stated by y = a+ bx.

In linear regression models, with a minimal statistical flavour, yi is treated as the
observed value of a random variable Yi, while xi is kept non-random as before. Therefore,
(3.1) is modified as

Yi = a+ bxi + ei. (3.2)

Note that this time the ei’s are necessarily random, which is what makes Yi’s random
variables. It is common to assume that ei’s are independent and have zero mean. The
random ei in (3.2) contrasts with ei in (3.1), which is merely a deviation due to the
imperfect fit of the linear line y = a+ bx to the data.

46
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The model is built such that the aim is often to predict, or estimate, Y0, a new ob-
servation to be received, from the knowledge of x0, which is known to be paired with Y0.
That is why the language in regression analysis is asymmetric in general. It is typically
said that Yi depends on xi. In the literature, there are several ways to refer to the vari-
ables Yi and xi. One common way is to refer to Yi as the “dependent” variable and xi as
the “independent” variable. However, this terminology may be confusing since xi and Yi
are not statistically independent. With reference to the usual aim of predicting Y0 from
x0, another terminology is to refer to Yi as the response variable, and xi as the predictor
variable.

The fact that the aim of regression analysis is usually predicting the response variable
Y given the predictor variable x is important to keep in mind. This aim underlies most
of the aspects of regression analysis and the choices to build a regression model in certain
ways (and not in other ways). Since the prediction problem is formalised as predicting
Y given x, we are interested in the distribution of Y conditional on x. Equation (3.2)
expresses that conditional distribution in a generative manner.

We have two different possible cases for the nature of the predictor variable.

• In one case, xi’s are design variables, on which the experimenter has full (or par-
tial) control. For example, assume that an experimenter wants to find out a relation
between the time needed to cook a pizza to a certain degree of crispness and tem-
perature. Then, the predictor variable xi is the temperature, which can surely be
designed by the experimenter, hence is a design variable. The response variable, Yi,
is the cooking time, and, accounting for the stochasticity involved in the cooking
process, it should be treated as a random variable. In such an experiment, x1, . . . , xn
can be chosen to maximize the precision of the regression analysis. Whatever the
choice for xi’s is, we base our inference on the conditional distribution of Yi, which
is expressed in (3.2).

• In the second case, xi is the observed value of a random variable Xi, which cannot be
controlled by the experimenter. (In the models covered in this chapter, we assume
that Xi = xi is observable; there exist models that account for latent predictors.)
This case naturally occurs when a data pair xi, yi are collected together. For exam-
ple, in an experiment conducted in search of a possible relation between happiness
(response) and wealth (predictor), the collected data will be a sample of randomly
selected people, whose wealth we do not have a control on. The regression equation
relating the random variables can be written as

Yi = a+ bXi + ei. (3.3)

Since we are interested in predicting the response from the predictor, the inference
will be based on the conditional distribution of Yi given Xi = xi, which is implied by
the very same equation (3.2).

Yi = a+ bxi + ei.
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Therefore, our inferential analysis will not be different from the first case where xi is
a design variable.

One use of treating xi as the observed value of a random variable is to justify the
linear regression. For example, as we will see later, when Xi, Yi are bivariate normal,
then the relationship in (3.3) follows with suitable choices for a and b in terms of the
moments (means, variances, and the cross-covariance) of the bivariate distribution.

Recall that linear regression is an example of functional dependence of the response
variable on the predictor variable. But what do we mean by “functional dependence”?
One way to define it is via the conditional expectation of the response variable given
the predictor variable, which is known as the population regression function, or shortly
regression function.

Definition 3.1 (Population regression function). Let (x, Y ) be a pair of variables, the
former being the predictor and the latter being the response variable. The conditional
expectation of Y given x, denoted by E(Y |x), is called the population regression function.

For the relation given in (3.2), assuming E(e) = 0, we have

E(Y |x) = a+ bx. (3.4)

The population regression function in (3.4) is linear in x, but also in a and b. In the
above equation, a and b are referred to as the parameters of the regression. The term
linear regression refers to a specification that is linear in parameters (not in the predictor
variable!).

Definition 3.2 (Linear regression). A population regression function specifies a linear
regression if it is linear in the parameters of the regression.

For example, with a and b being the parameters of the regression, E(Y |x) = a + bx2

specifies a linear regression (a linear relationship between Y and x2). The regression
function E(Y |x) = a exp(bx) does not specify a linear regression, though.

A.1 Least squares solution

A non-statistical, but quite reasonable, method is to fit a straight line through the points
(x1, y1), . . . , (xn, yn) that is as “close” to the data points as possible. One way of measuring
the goodness of a fitted line is to look at the residual sum of squares (RSS). If the fitted
line is y = a+ bx, then RSS is defined as

RSS =
n∑
i=1

(yi − a− bxi)2. (3.5)

The least squares solutions of a and b are defined to be those values ã and b̃ that minimise
the RSS, that is

min
a,b

n∑
i=1

(yi − a− bxi)2 =
n∑
i=1

(yi − ã− b̃xi)2
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Another way to express the above is to use the arg min (minimising argument) notation,

(ã, b̃) = arg min
a,b

n∑
i=1

(yi − a− bxi)2.

which is well defined when the solution is unique.1 The solution is usually expressed in
terms of the following quantities. The sample means are defined as usual,

x̄ =
1

n

n∑
i=1

xi, ȳ =
1

n

n∑
i=1

yi

Next, define the sums of squares

Sxx =
n∑
i=1

(xi − x̄)2, Syy =
n∑
i=1

(yi − ȳ)2. (3.6)

and the sum of cross products

Sxy =
n∑
i=1

(xi − x̄)(yi − ȳ). (3.7)

The quantities defined above will be extensively used both in the non-statistical and sta-
tistical settings. We can now state the least square solution for (a, b).

Exercise 3.1. Show that the least-squares solution for (a, b) is given by

b̃ =
Sxy
Sxx

, ã = ȳ − b̃x̄.

The least squares solution minimises the RSS, which is one way of measuring the
distance between the fitted line y = a + bx and the data points. There are several other
ways to measure the distance. If we scatterplot the data points (xi, yi), i = 1, . . . , n and
superimpose the line y = a + bx, the residual error for the i’th data point, the residual
ẽi = yi − a − bxi can be seen to be the vertical distance between the line and (xi, yi).
Therefore, ã and b̃ minimize the sum of squares of those vertical distances.

Rather than vertical distances, one may be interested in horizontal distances instead.
This corresponds to minimizing

n∑
i=1

(xi − a′ − b′yi)2. (3.8)

over a′ and b′, where a′ and b′ are such that y = a + bx can be rewritten as x = a′ + b′y.
Hence, we have a′ = −a/b and b′ = 1/b. The minimization of (3.8) follows very similar
lines as those in minimising the RSS and the following result should be easy to derive.

1In general, arg minx f(x) is defined as the set of x values for which the minimum is attained.
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Exercise 3.2. Show that the values of a′ and b′ that minimises (3.8) is given by

b̃′ =
Sxy
Syy

, ã′ = x̄− b̃′ȳ.

Exercise 3.2 reveals the slope of the fitted line according to (3.8) is 1/b̃′ = Syy/Sxy.
Compare that to the least squares solution b̃ = Sxy/Sxx that minimises the RSS: which
slope is bigger? In fact the ratio between those slopes reveals the answer:

b̃

1/b̃′
= b̃b̃′ =

Sxy
Sxx

Sxy
Syy

=
S2
xy

SxxSyy

One can show that the above ratio is always less than or equal to 1. The key to derive
that relation is Holder’s inequality.

Theorem 3.1 (Hölder’s inequality for real valued numbers). For all n ≥ 1, p, q ∈ (1,∞)
such that 1/p+ 1/q = 1, we have

n∑
i=1

|aibi| ≤

(
n∑
i=1

|ai|p
) 1

p
(

n∑
i=1

|bi|q
) 1

q

for all (a1, . . . , an), (b1, . . . , bn) ∈ Rn. (3.9)

Exercise 3.3. Using Hölder’s inequality with p = q = 2, ai = xi − x̄, and bi = yi − ȳ,
show that S2

xy/(SxxSyy) ≤ 1.

The least-square method (or the one we discussed in comparison to it) is a data-oriented
method, which only summarises the sample data by fitting a line to it. This data-fitting
operation is not a subject of statistics in the classical sense. The available data are not
treated as a sample from a population. Hence there are no distribution assumptions about
the data. This means that a and b are not treated as population parameters but merely
coefficients of the linear fit to the data. This is why “least-squares solution” may be a
more appropriate term than “least-squares estimation” for this method.

The following section will make some minimal statistical assumptions about the data
and present an estimator for a and b that has appealing properties under fairly general
conditions. It turns out that that estimator is the same as the least-squares solution!

A.2 Best linear unbiased estimator

A.2.1 A general statistical model for simple linear regression

This section considers a fairly general statistical linear regression model for the observed
data. The predictor variables x1, . . . , xn are fixed and known. We can assume either
that the predictor variables x1, . . . , xn are chosen by the experimenter or that they are
observations of random variables; the subsequent analysis will not change. As for the
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response variables, we assume that y1, . . . , yn are observed values of uncorrelated random
variables Y1, . . . , Yn. The linear relationship between xi and Yi is given by

Yi = a+ bxi + ei (3.10)

where ei’s are uncorrelated random variables with zero mean E(ei) = 0 and equal unknown
variance V (ei) = σ2. Several properties of Yi’s follow. The expectation and the variance
are given by

E(Yi) = a+ bxi, V (Yi) = σ2, i = 1, . . . , n

where we suppress the notation for the conditioning on the x variable in the expectation,
since this conditioning is there for the whole analysis that follows. Also, the uncorrelated-
ness among ei’s is inherited by Yi’s.

Exercise 3.4. Show that Yi’s are uncorrelated, that is, Cov(Yi, Yj) = 0 for any i 6= j.

Note the generality of this model: the parameters a, b, and the variance parameter σ2

determine only the first and the second moments of Yi’s. Thus, any sort of inference we
make under those assumptions must be valid for all populations satisfying those assump-
tions. In the following sections, we will be more specific and let Yi’s be normal random
variables; this will be mostly because the normality assumption allows us to go further in
our inference and derive other sorts of information about the population parameters a and
b, such as confidence intervals, tests, etc.

A.2.2 Estimation of regression parameters

How do we estimate a and b in this general simple linear regression model given the data
(x1, y1), . . . , (xn, yn)? It is important to note that we cannot use distribution based methods
such as the method of moments or maximum likelihood, since we do not fully know the
conditional distribution of Yi given xi. Rather, only the first two moments are available.
One convenient way to estimate a, b is to restrict the attention to linear estimators.

Definition 3.3 (Linear estimator). An estimator is called linear if it is of the form∑n
i=1 diYi.

Among the class of linear estimators, we further restrict the attention to unbiased
estimators. Among the unbiased estimators, we want to find the “best” estimators in
terms of variance.

Definition 3.4 (Best linear unbiased estimator). A linear and unbiased estimator is called
a best linear unbiased estimator (BLUE) if it has the minimum variance among all linear
and unbiased estimators.

Below we present the best linear unbiased estimators for the parameters a and b as a
theorem.
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Theorem 3.2 (BLUE for a, b). Given (x1, Y1), . . . , (xn, Yn), the best linear unbiased esti-
mators for a and b are given as

Â = Ȳ − x̄SxY
Sxx

, B̂ =
SxY
Sxx

(3.11)

The theorem should be striking to the careful reader: The observed values of the BLUE
estimators, â and b̂, and the least-squares solution coincide!

In the following, we will prove Theorem 3.2. Our key result for the proof is the Gauss-
Markov theorem, which concerns a general linear model, of which the multiple linear
regression model, with any number of predictors, is a special version. We now take a
detour by introducing the general linear model, and the multiple regression model, state
the Gauss-Markov theorem in the setting of the general linear model and finally deduce
the result for the simple linear regression model.

Multiple linear regression as a linear model: Firstly, we will set up the scene for the
Gauss-Markov theorem. Let X be an observable n× (k + 1) matrix and y = (y1, . . . , yn)T

be a n× 1 vector,

X =


x1,0 x1,1 . . . x1,k

x2,0 x2,1 . . . x2,k
...

...
. . .

...
xn,0 xn,1 . . . xn,k

 , y =


y1

y2
...
yn

 .
The pair X, y is an often encountered form of data in problems where one is interested in
finding a relation between the rows of X and the respective elements of y. One convenient
way to model such a relationship between X and y is define a linear relationship with
possible deviation. More concretely, one may consider modeling the relation as

y = Xβ + e (3.12)

where β = (β0, β1, . . . , βk)
T is a parameter vector defining the linear relationship and

e = (e1, . . . , en)T , with ei being the deviation from the linear relationship between the i’th
row of X and yi, due to noise in the measurements, for example. Furthermore, we assume
that X has rank k + 1, so that XTX is invertible.

When linear regression is concerned, it is customary to set the first (or the last) column
of X to all 1’s, so that xi,0 = 1 for all i = 1, . . . , n. Such a choice of X yields the formulae

yi = β0 + β1xi,1 + . . .+ βkxi,k + ei, i = 1, . . . , n, (3.13)

(recall xi,0 = 1) where ei is the deviation from the linear regression. This form of relation
is referred to as multiple linear regression. The component β0 is called the intercept
parameter, as in the simple linear regression model. The model in (3.13) has k predictor
variables for each response variable. This should remind the reader the simple linear
regression model, which is easily obtained by taking k = 1, xi,0 = 1, xi,1 = xi, β0 = a and
β1 = b.
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Least squares solution: As far as the model in (3.12) is concerned, the residual sum
of squares RSS can be defined in a similar fashion to the simple linear regression model as

RSS =
n∑
i=1

(
yi − β0 −

k∑
j=1

βjxi,j

)2

With matrix-vector notation, the above can be rewritten as

RSS = ||y −Xβ||22
= (y −Xβ)T (y −Xβ)

= yTy − 2βTXTy + βTXTXβ.

The least-squares solution for β is the value β̃ that minimises the RSS.

Theorem 3.3. The least squares solution for β is given by

β̃ = (XTX)−1XTy.

The following discussion is devoted to the proof of Theorem 3.3. Minimisation with
respect to the vector β can be performed by taking the derivative of RSS with respect to
β. Differentiating an expression with respect to a vector returns a vector of element-wise
differentiations, which is also called the gradient of f . More concretely,

Definition 3.5. For a function f : Rm → R, the vector

∂

∂v
f(v) =

(
∂

∂v1

f(v), . . . ,
∂

∂vm
f(v)

)T
is called the gradient of f with respect to v.

We need the following facts regarding differentiating a scalar, obtained by matrix-vector
products, with respect to a vector.

Lemma 3.1. Let x and y be a m × 1 vector, A be a m × m matrix, and x, y, and A
be independent variables (not in statistical terms, but in the sense that one is not defined
through any of the others). Then, we have

∂

∂x
xTy =

∂

∂x
yTx = y,

∂

∂x
xTAx = (A+ AT )x.

Using Lemma 3.1, the gradient of RSS with respect to β is

∂

∂β
(yTy − 2βTXTy + βTXTXβ) = −2XTy + 2XTXβ. (3.14)

Since X has rank k + 1, the matrix XTX is invertible. In that case, a solution exists for

−2XTy + 2XTXβ = 0⇔ XTXβ = XTy
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and it is given by
β̃ = (XTX)−1XTy.

To establish the least-squares solution fully, we need to ensure the Hessian of RSS, which
corresponds to the second derivative in the scalar case, is positive definite. We will make
the definitions of those terms.

Definition 3.6 (Hessian). For a function f : Rm → R, the square matrix H of second-
order partial derivatives, given by

Hij(v) =
∂2f(v)

∂vi∂vj
, i = 1, . . . ,m; j = 1, . . . ,m

is called the Hessian matrix of f at v.

Definition 3.7 (Positive semi-definiteness). An m×m square matrix A is

• positive definite if xTAx > 0 for every vector x ∈ Rm,

• positive semi-definite if xTAx ≥ 0 for every vector x ∈ Rm,

• negative definite if xTAx < 0 for every vector x ∈ Rm,

• negative semi-definite if xTAx ≤ 0 for every vector x ∈ Rm.

Exercise 3.5. Finish the proof of Theorem 3.3 by showing that the Hessian of RSS at β̃
is positive definite.

We have only derived the least-squares solution for the data X, y. Again, the least-
squares solution is only a data-driven ‘solution’ which is not a statistical matter. This is
because no statistical assumptions are made for X or y. However, as we will see soon, the
least-squares solution is quite relevant to a statistical formulation of the linear model in
(3.12).

Just like in the simple linear regression case, a minimal extension towards statisti-
cal modelling is to assume that y1, . . . , yn are observed values of the random variables
Y1, . . . , Yn. Defining the collection of those variables as a vector Y = (Y1, . . . , Yn)T , we
have the model

Y = Xβ + e

where this time e is a vector of uncorrelated random noise terms with E(ei) = 0, V (ei) = σ2

for some unknown σ2 and Cov(ei, ej) = 0 for i 6= j.
In parallel to the simple linear regression model, an estimator of β is said to be linear

if each β̂j is of the form
∑n

i=1 dj,iYi. Hence a linear estimator for β is given by DY , where
D is a (k + 1)× n matrix given by

D =


d01 d02 . . . d0n

d11 d12 . . . d1n
...

...
. . .

...
dk1 dk2 . . . dkn
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Consider now the estimator suggested by the least square solution, that is,

β̂ = (XTX)−1XTY. (3.15)

Note the difference from the least square solution β̃: Here the β̂ is an estimator, defined
as a random variable, with the source of randomness being Y . Given X and Y = y, the
estimate produced by β̂ is equal to the least squares solution, β̃ = (XTX)−1XTy.2

Exercise 3.6. Show that β̂ = (XTX)−1XTY is a linear estimator. Identify D.

Exercise 3.7. Show that β̂ = (XTX)−1XTY is an unbiased estimator for β.

It is possible to extend the definition of a best linear unbiased estimator for multi-
dimensional parameters. When we have an estimator of a parameter vector, its second
moment is characterized not merely as a scalar variance but as a covariance matrix. One
way to compare estimators in terms of their covariance matrices is to check whether the
difference between the covariance matrices is positive (or negative) (semi)-definite. (In
the scalar case, the difference being positive reduces to having a bigger variance.) The
definition of the best linear unbiased estimator for a parameter vector is indeed based on
that comparison.

Definition 3.8 (BLUE (generalised)). An estimator β̂ with covariance Cov(β̂) is said
to be a best linear unbiased estimator if for any other linear unbiased estimator β̂′ with
Cov(β̂′), the difference Cov(β̂′) − Cov(β̂) is positive semidefinite, which is also shown by
Cov(β̂′) � Cov(β̂).

We are finally ready to set the Gauss-Markov theorem, which states that the least-
squares estimator has the lowest variance within the linear unbiased estimators.

Theorem 3.4 (Gauss-Markov theorem). Suppose we have

Y = Xβ + e

where X is an observable full rank matrix having less columns than its rows, and e is a
vector of uncorrelated random noise terms with E(ei) = 0, V (ei) = σ2 and Cov(ei, ej) = 0

for i 6= j. Then, the estimator β̂ = (XTX)−1XTY that is suggested by the least squares
solution, or shortly the least squares estimator, is the best linear unbiased estimator.

Reduction to simple linear regression model: The simple linear regression model
is recovered by

X =


1 x1

1 x2
...

...
1 xn

 , Y =


Y1

Y2
...
Yn

 , β =

[
a
b

]
, e =


e1

e2
...
en

 (3.16)

and check that, given Y = y, the RSS in (3.5) for the simple model is indeed recovered by
(y −Xβ)T (y −Xβ).

2While an estimator is defined a random variable, a realized value of an estimator is called an estimate.
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Exercise 3.8. Consider the simple linear regression model.

(a) Show that, we have

XTX =

[
n nx̄
nx̄ Sxx + nx̄2

]
, XTy =

[
nȳ

Sxy + nx̄ȳ

]
, (3.17)

(b) Show that

(XTX)−1XTy =

[
ȳ − x̄Sxy/Sxx
Sxy/Sxx

]
,

and verify that the least square solution for the simple linear regression model is
indeed deduced from the least-squares solution shown for the general case.

Hint: The inverse of an invertible 2× 2 matrix is given by[
a b
c d

]−1

=
1

ad− bc

[
d −b
−c a

]
.

Corollary 3.1 (of Theorem 3.2). Since the least square estimators Â and B̂ in (3.11)
is a special case β̂ where X and y are given in (3.16), they are the best linear unbiased
estimators for a and b.

A.3 Models with distribution assumptions

In the previous section, Section A.2, we made some statistical assumptions about the data.
Under those assumptions, we were able to show that the least-squares estimator has an
optimality property among linear and unbiased estimators of a and b. However, since
our assumptions were limited to the first and the second moments only and not the full
probability distribution of the data, we were unable to derive confidence bounds or tests
for the parameters a and b.

In this section, we present two statistical models that completely specify the conditional
distribution of the response variables Y1, . . . , Yn given x1, . . . , xn.

A.3.1 Conditional normal model

The conditional normal model is the most common simple linear regression model. The ob-
served data are, as before, the pairs (x1, y1), . . . , (xn, yn). The predictor variables x1, . . . , xn
are assumed fixed and known, and no statistical assumptions are made for them. We only
model the conditional distribution of Yi’s given xi’s, and, by no surprise, we use a normal
distribution for that. More specifically, Yi’s are independent and distributed according to

Yi ∼ N (a+ bxi, σ
2), i = 1, . . . , n, (3.18)

or, equivalently,

Yi = a+ bxi + ei, ei
i.i.d.∼ N (0, σ2), i = 1, . . . , n, (3.19)
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Note that ei’s were assumed uncorrelated in the previous section. Here we add to it the
assumption that they have the normal distribution with zero mean and some variance,
and the uncorrelatedness property has been automatically strengthened to independence.
(Recall that if jointly normal variables are uncorrelated, they are independent.) There-
fore, the only additional assumption that has led to the conditional normal model is the
normality ei’s.

Now that the exact (conditional) distribution of Y1, . . . , Yn is specified, we can write
down the joint probability distribution function Y1, . . . , Yn given the parameters a, b, and
σ2. It is given by

f(y1:n; a, b, σ2) =
1

(2πσ2)n/2

n∏
i=1

exp

{
− 1

2σ2
(yi − a− bxi)2

}

=
1

(2πσ2)n/2
exp

{
− 1

2σ2

n∑
i=1

(yi − a− bxi)2

}
.

We will use this joint distribution to find the estimators for a and b.

A.3.2 Bivariate normal model

In the conditional normal model, xi’s are assumed fixed and known and no statistical
assumptions are made for them. There are cases where xi’s are observations of random
variables. For example, recall the example where the experimenter wants to find out a
relation between the wealth and happiness of a person. By the way of collecting the data
for this purpose, we can talk about the wealth of the randomly selected people as random
variables.

In the bivariate normal model (x1, y1), . . . , (xn, yn) are observations of independent
bivariate random vectors (X1, Y1), . . . , (Xn, Yn), where the bivariate vector has a bivariate
normal distribution

(Xi, Yi)
i.i.d.∼ N

([
µx
µy

]
,

[
σ2
x ρσxσy

ρσxσy σ2
y

])
, i = 1, . . . , n. (3.20)

where ρ is the correlation of Xi and Yi with |ρ| < 1. (We avoid ρ = 1 to ensure the
existence of the joint pdf). Observe that this probability distribution can be specified by
the parameters µx, µy, ρ, σ2

x and σ2
y , and that is why sometimes we write

(Xi, Yi)
i.i.d.∼ bivariate-normal(µx, µy, σ

2
x, σ

2
y, ρ), i = 1, . . . , n.

Exercise 3.9. By working out the joint pdf of a multivariate normal distribution and the
inverse of the covariance matrix given in (3.20), show that the joint probability density
can be explicitly written as

f(x, y) =
1

2πσxσy
√

1− ρ2
e
− 1

2(1−ρ2)

[
(x−µxσx

)
2
−2ρ(x−µxσx

)
(
y−µy
σy

)
+
(
y−µy
σy

)2]
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As far as simple linear regression is concerned the roles of Xi’s and Yi’s are the same:
Xi is the predictor variable and Yi is the response variable. Therefore, we are interested
in predicting Y from a given x value. For this, we need the conditional distribution of Y
on x.

Exercise 3.10. Show that, when (X, Y ) ∼ bivariate-normal(µx, µy, σ
2
x, σ

2
y, ρ), the condi-

tional distribution is also normal with

Y |(X = x) ∼ N
(
µy + ρ

σy
σx

(x− µx), σ2
y(1− ρ2)

)
(3.21)

[Hint: To derive the conditional distribution, write down the joint distribution, treat x as
fixed, and show that the whole expression, when considered a function of y is proportional
to a probability density of a normal distribution for y. This is a trick often used in Bayesian
statistics to derive conditional distributions.]

The conditional distribution in (3.21) yields the conditional expectation

E(Y |x) = µy + ρ
σy
σx

(x− µx) =

(
µy − ρ

σy
σx
µx

)
+

(
ρ
σy
σx

)
x (3.22)

The bivariate normal model implies that the population regression function of Y on x is
linear in x. This is a distinction for the bivariate normal model: unlike the other models
we have seen so far, we did not assume a linear regression function in x; the bivariate
normal model automatically led to that. Also, the conditional variance is given by

V (Y |x) = σ2
y(1− ρ2).

which is independent of x. Therefore, we are back in the setting of the conditional normal
model after a reparametrisation: Letting a = µy− ρσyσxµx, b = ρσy

σx
, and σ2 = σ2

y(1− ρ2) we
have independent Yi’s with

E(Y |x) = a+ bx, V (Y |x) = σ2.

so that we have a linear regression model.
For the bivariate model, the linear regression analysis is almost always carried out using

the conditional distribution of Yi’s given xi’s. If this is the case, we end up in the same
situation as the conditional normal model described in Section A.3.1. If we condition on
xi’s, whether they are design variables or observed values of random variables does not
matter.

Moreover, even when X is random with a different marginal distribution than normal,
any type of linear regression analysis based on the conditional distribution of the responses
given predictors can be carried out in the same way as long as the joint distribution of
(Xi, Yi)’s is such that Yi’s are independent and Y |(X = x) ∼ N (a+ bx, σ2).

We have thus concluded that inference based on point estimators, intervals, or tests for
a, b (and σ2) is the same for both conditional normal and bivariate normal models.
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A.3.3 Estimation and testing with normal errors

In the following, we discuss inference procedures under the conditional normal model
defined by (3.18) or (3.19).

We begin with estimation of the model parameters a, b, and σ2 via maximum likelihood.
The log-likelihood function of (a, b, σ2), given the data x1:n, y1:n, is given by

`((a, b, σ2);x1:n, y1:n) = −n
2

[log(2π) + log σ2]− 1

2σ2

n∑
i=1

(yi − a− bxi)2

For any value of σ2, maximising the log-likelihood with respect to a and b is equivalent to
minimising the sum of squares

n∑
i=1

(yi − a− bxi)2

which yields the least square solution (once again!)

Â = Ȳ − SxY
Sxx

x̄, B̂ =
SxY
Sxx

.

Hence, the least square estimators (as random variables) Â and B̂ in (3.11) are also the
maximum likelihood estimators for a and b. Substituting those in the log-likelihood and
maximizing with respect to σ2, one gets the maximum likelihood estimator for σ2.

Exercise 3.11. Doing as suggested in the previous sentence, show that the maximum
likelihood estimator for σ2 is given by

σ̂2 =
1

n

n∑
i=1

(Yi − Â− B̂xi)2.

Define the residual from the regression êi = Yi − Â− B̂xi, so that σ̂2 = 1
n

∑n
i=1 ê

2
i .

Exercise 3.12. Show that E(êi) = 0.

The estimator σ̂2 is a biased estimator of σ2. Specifically, as we will prove later, we
have

E(σ̂2) =
n− 2

n
σ2.

Alternatively, we propose the unbiased estimator

S2
e =

1

n− 2

n∑
i=1

(Yi − Â− B̂xi)2 =
1

n− 2

n∑
i=1

ê2
i .

In the following, we will show several properties regarding Â, B̂, and S2
e . The most

remarkable ones are gathered in the following theorem:
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Theorem 3.5. The estimators Â, B̂, and S2
e are distributed with

Â ∼ N

(
a,

σ2

Sxxn

n∑
i=1

x2
i

)
, B̂ ∼ N

(
b,

σ2

Sxx

)
,

(n− 2)S2
e

σ2
∼ χ2

n−2. (3.23)

Moreover, we have the following relations between Ā, B̄, S2
e

• Cov(Â, B̂) = − x̄
Sxx
σ2,

• Â and S2
e are independent,

• B̂ and S2
e are independent.

We will prove those claims one by one. While proving, and in many other places, some
manipulations of quantities Sxx, Sxy and Syy as below prove useful.

Exercise 3.13. Show that, we have

Sxx =
n∑
i=1

(xi − x̄)xi, Syy =
n∑
i=1

(yi − ȳ)yi, Sxy =
n∑
i=1

(xi − x̄)yi =
n∑
i=1

xi(yi − ȳ).

Sampling distribution of B̂: First, we show that B̂ is a linear combination of Yi’s.
Indeed, using Exercise 3.13, we have

B̂ =
SxY
Sxx

=

∑n
i=1(xi − x̄)Yi

Sxx
=

n∑
i=1

xi − x̄
Sxx

Yi.

Since Yi’s have a normal distribution, so is B̂. The mean and the variance of B̂ can be
derived as

E(B̂) =
n∑
i=1

xi − x̄
Sxx

E(Yi)

=
n∑
i=1

xi − x̄
Sxx

[a+ bxi]

=
n∑
i=1

a(xi − x̄)

Sxx
+ b

n∑
i=1

xi
xi − x̄
Sxx

=
n∑
i=1

a(xi − x̄)

Sxx
+ b

1

Sxx

n∑
i=1

xi(xi − x̄)

= 0 +
1

Sxx
bSxx = b
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where the last line follows from the result for Sxx in Exercise 3.13. To derive the variance of
B̂, we make use of the independence of Yi’s and write the variance of the linear combination
as a sum.

Var(B̂) =
n∑
i=1

(
xi − x̄
Sxx

)2

Var(Yi)

=

∑n
i=1(xi − x̄)2

S2
xx

σ2

=
Sxx
S2
xx

σ2

=
σ2

Sxx
.

Sampling distribution of Â: Just like B̂, the estimator Â can also be written as a
linear combination of Yi’s,

Â = Ȳ − x̄SxY
Sxx

=
n∑
i=1

[
1

n
− x̄(xi − x̄)

Sxx

]
Yi.

Therefore, the expectation of Â is given by

E(Â) =
n∑
i=1

[
1

n
− x̄(xi − x̄)

Sxx

]
E(Yi)

=
1

n

n∑
i=1

E(Yi)−
n∑
i=1

x̄(xi − x̄)

Sxx
E(Yi)

=
1

n

n∑
i=1

(a+ bxi)− x̄
n∑
i=1

xi − x̄
Sxx

E(Yi)

= a+ bx̄− x̄b = a.

where the last line follows from the fact that the second sum was shown to be b. Again, to
derive the variance of Â, we make use of the independence of Yi’s and write the variance
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of the linear combination as a sum.

Var(Â) =
n∑
i=1

[
1

n
− x̄

(
xi − x̄
Sxx

)]2

Var(Yi)

=
n∑
i=1

[
1

n2
+ x̄2

(
xi − x̄
Sxx

)2

− 2

n
x̄

(
xi − x̄
Sxx

)]
σ2

= σ2

[
1

n
+

x̄2

S2
xx

n∑
i=1

(xi − x̄)2 − 2

n

x̄

Sxx

n∑
i=1

(xi − x̄)

]

= σ2

[
1

n
+

x̄2

Sxx

]
= σ2

[
Sxx + nx̄2

nSxx

]
= σ2

∑n
i=1 x

2
i

nSxx
.

Covariance between A and B: Although not entirely necessary here, we define covari-
ance between any two random vectors (of possibly different dimensions) below.

Definition 3.9 (Covariance between two vectors). For random vectors X ∈ Rm and
Y ∈ Rn, covariance between X and Y is a m× n matrix defined as

Cov(X, Y ) = E(XY T )− E(X)E(Y )T .

That is, the (i, j)’th element of Cov(X, Y ) is Cov(Xi, Yj).

When we want to find the covariance between two variables (or vectors), the following
lemmas are useful if those variables are linear combinations of certain other variables whose
covariance can be found more easily.

Lemma 3.2. For random vectors X, Y ∈ Rm and Z ∈ Rn, we have

Cov(X + Y, Z) = Cov(X,Z) + Cov(Y, Z)

Lemma 3.3. For random vectors X ∈ Rm and Y ∈ Rn, and matrices P ∈ Rk×m and
Q ∈ Rl×n, we have

Cov(PX,QY ) = PCov(X, Y )QT .

Using Lemma 3.3, we can show that

Cov(Â, B̂) = Cov

(
n∑
i=1

[
1

n
− (xi − x̄)x̄

Sxx

]
Yi ,

n∑
j=1

(xj − x̄)

Sxx
Yj

)

=
n∑
i=1

[
1

n
− (xi − x̄)x̄

Sxx

]
(xi − x̄)

Sxx
σ2

= − x̄

Sxx
σ2
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Combining the knowledge on the first and the second moments, the distribution of the

vector
[
Â B̂

]T
is fully identified as[

Â

B̂

]
∼ N

([
a
b

]
, σ2

[∑n
i=1 x

2
i

nSxx
− x̄
Sxx

− x̄
Sxx

1
Sxx

])
.

Independence between Â and S2
e : For independence between Â and S2

e , we first need
to show that Â and each êi are independent. Since êi = Yi−Â−B̂xi is a linear combination
of Yi’s, Â and êi are jointly normal. Therefore, it is sufficient to show that Â and êi are
uncorrelated. We check that

Cov(Yi − Â− B̂xi , Â) = Cov(Yi, Â)− Var(Â)− xiCov(Â, B̂)

=

[
1

n
− (xi − x̄)x̄

Sxx

]
σ2 −

∑
j x

2
j

nSxx
σ2 + xi

x̄σ2

Sxx

=
σ2

nSxx

(
Sxx − n(xi − x̄)x̄−

n∑
j=1

x2
j + nxix̄

)

=
σ2

nSxx

(
Sxx − nxix̄+ nx̄2 −

n∑
j=1

x2
j + nxix̄

)

=
σ2

nSxx

(
Sxx + nx̄2 −

n∑
j=1

x2
j

)

=
σ2

nSxx
(Sxx − Sxx) = 0.

The second line in the derivation above is due to the fact that Â =
∑n

i=1 diYi is a linear

combination of Yi’s, with di = 1/n − (xi − x̄)x̄/Sxx, and as a result Cov(Yi, Â) = σ2di.
Since Â is independent from each êi, it is also independent from S2

e , a function of êi’s.

Independence between B̂ and S2
e : For independence between B̂ and S2

e , we follow a
similar path: First need to show that B̂ and each êi are independent. Since êi = Yi−Â−B̂xi
is a linear combination of Yi’s, B̂ and êi are jointly normal. Therefore, it is sufficient to
show that B̂ and êi are uncorrelated. We check that

Cov(Yi − Â− B̂xi, B̂) = Cov(Yi, B̂)− Cov(Â, B̂)− xiVar(B̂)

=
xi − x̄
Sxx

σ2 +
x̄σ2

Sxx
− xi

σ2

Sxx
= 0.

Again, the second line in the derivation above is due to the fact that B̂ =
∑n

i=1 ciYi is a

linear combination of Yi’s, with ci = (xi− x̄)/Sxx, and as a result Cov(Yi, B̂) = σ2ci. Since
B̂ is independent from each êi, it is also independent from S2

e , a function of êi’s.
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A.3.4 Inference for the parameters

We will present confidence intervals and tests for a, b, and σ2.

Inference for b: Between a and b, the slope parameter b is often more important in
linear regression. For example, the situation b = 0 corresponds to no linear regression at
all. Therefore, to test the existence of linear regression, the null hypothesis H0 : b = 0 can
be considered, with the alternative H1 : b 6= 0.

Observe that the distribution of B̂ involves the unknown parameter σ2. This can be
eliminated by factoring in the estimator of σ2.

Exercise 3.14. Using the results in Theorem 3.5, show that the test statistic

B̂ − b
Se/
√
Sxx
∼ tn−2. (3.24)

The test statistic given in (3.24) can be used to obtain confidence intervals or test a
value for b.

Exercise 3.15. Show that, the interval(
B̂ − Se√

Sxx
tα/2,n−2, B̂ +

Se√
Sxx

tα/2,n−2

)
is a 100(1− α)% confidence interval for b.

Exercise 3.16. Show that, the null hypothesis H0 : b = b0 can be tested with a significance
level α if the following critical value is used to reject H0.

C =

{∣∣∣∣∣ b̂− b0

Se/
√
Sxx

∣∣∣∣∣ > tα/2,n−2

}

Testing the existence of a linear regression: The null hypothesis H0 : b = 0 vs H1 :
b 6= 0 is worth more investigation, since testing it is equivalent to testing for the existence
of linear regression on the predictor variable. Related to testing this null hypothesis, we
introduce some important concepts.

Firstly, a partitioning the sum of squares as in the ANOVA setting is also available for
the simple linear regression model. Let Ŷi = Â + B̂xi be the ‘fitted’ value of Yi based on
the estimators of a and b.

Exercise 3.17. Show that in the simple normal linear regression model, the total sum of
squares can be partitioned as

n∑
i=1

(Yi − Ȳ )2

︸ ︷︷ ︸
total sum of squares

=
n∑
i=1

(Ŷi − Ȳ )2

︸ ︷︷ ︸
regression sum of squares

+
n∑
i=1

(Yi − Ŷi)2

︸ ︷︷ ︸
residual sum of squares (RSS)

(3.25)

Furthermore, using that ei’s are normal,
∑n

i=1(Ŷi−Ȳ )2 and
∑n

i=1(Yi−Ŷi)2 are independent.
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Next, we will see how the partitioning is particularly relevant to the null hypothesis
H0 : b = 0 if ∣∣∣∣∣ B̂

Se/
√
Sxx

∣∣∣∣∣ > tα/2,n−2,

or, equivalently,
B̂2

S2
e/Sxx

> Fα,1,n−2. (3.26)

Using B̂ = SxY /Sxx and RSS = S2
e (n− 2), we have

B̂2

S2
e/Sxx

=
S2
xY /Sxx

RSS/(n− 2)
(3.27)

The numerator can also be shown to be equal to the regression sum of squares, which was
defined as the first term on the right hand side of the partitioning equation in (3.25). More
explicitly, it can be shown that

Exercise 3.18. Show that the numerator in (3.29) is equal to the regression sum of squares,

S2
xY

Sxx
=

n∑
i=1

(Ŷi − Ȳ )2 (3.28)

where the right hand side was defined as the regression sum of squares in (3.25).

Using the result in Exercise 3.18, we can write the test statistic in (3.26)

B̂2

S2
e/Sxx

=
regression sum of squares

residual sum of squares/(n− 2)
(3.29)

Equation (3.29) already suggests that the regression sum of squares has a χ2
1 under H0 :

b = 0. This can be shown easily by considering the partitioning in (3.25).

Exercise 3.19. Show that, when b = 0, we have the following distributions of the total
sum of squares

1

σ2

n∑
i=1

(Yi − Ȳ )2 ∼ χ2
n−1,

1

σ2

n∑
i=1

(Ŷi − Ȳ )2 ∼ χ2
1.

[Hint: Use independence of the terms and the distribution of RSS/σ2]

An ANOVA table is available in Table 3.1 for the simple normal linear regression model,
with a focus on testing b = 0.
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Table 3.1: ANOVA table for simple normal linear regression model
source of variation d.o.f Sum of squares Mean square F statistic

Regression 1 Reg. SS = S2
xy/Sxx MS(Reg) = Reg. SS F = MS(Reg)

MS(Resid)

Residual n− 2 RSS =
∑n

i=1 ê
2
i MS(Resid) = RSS

n−2

Total n− 1 TSS =
∑n

i=1(yi − ȳ)2

Coefficient of determination: Another statistic that quantifies how well the fitted line
describes the data is called the coefficient of determination, and it is given by

r2 =
regression sum of squares

total sum of squares
=

∑n
i=1(ŷi − ȳ)2∑n
i=1(yi − ȳ)2

=
S2
xy

SxxSyy

From the partitioning equation, we have 0 ≤ r2 ≤ 1. A better fit, which means that ŷi’s
are close to yi’s, yields larger values of r2. We could also define R2, the random variable
version of r2, through the random variables Yi’s. Under H0 : b = 0, R2 is expected to take
small values.

Exercise 3.20. Show that the test statistic in (3.29) is equal to (n− 2)R2/(1−R2).

Inference for a: Although the intercept parameter a is less important than the slope
parameter b, confidence intervals and tests can be obtained for a as well, by following
similar steps as for b. For example, a = 0 can be tested to understand whether the linear
line crosses the origin. Observe that the distribution of Â also involves the unknown
parameter σ2, which can be eliminated by factoring in the estimator of σ2.

Exercise 3.21. Using the results in Theorem 3.5, show that the test statistic

Â− a

Se

√∑n
i=1 x

2
i

Sxxn

∼ tn−2. (3.30)

The test statistic given in (3.30) can be used to obtain confidence intervals or test a
value for b.

Exercise 3.22. Show that, the intervalÂ− Se
√∑n

i=1 x
2
i

Sxxn
tα/2,n−2, Â+ Se

√∑n
i=1 x

2
i

Sxxn
tα/2,n−2


is a 100(1− α)% confidence interval for a.

Exercise 3.23. Show that, the null hypothesisH0 : a = a0 can be tested with a significance
level α if the following critical value is used to reject H0.

C =


∣∣∣∣∣∣ â− a0

Se

√∑n
i=1 x

2
i

Sxxn

∣∣∣∣∣∣ > tα/2,n−2
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Simultaneous inference for a and b: A simultaneous confidence interval for a and b
can be obtained, for example by using Bonferroni correction. Namely, obtain a 100(1 −
α/2)% confidence interval for a and b separately, and, denoting them as CIa, CIb, consider
their intersection

CIa,b = {(a′, b′) : a′ ∈ CIa and b′ ∈ CIb}

will give a simultaneous confidence interval for a, b with a confidence level that is at least
1−α. Note also that the CIa,b can be used to devise a critical region as well. For example,
for the null hypothesis H0 : a = a0, b = b0, the critical region

C = {(a0, b0) /∈ CIa,b}

gives a hypothesis test of size at most α.
However, we can be smarter than joining two tests (or confidence intervals) using

standard methods, which can be loose. Recall that the vector
[
Â B̂

]T
has a bivariate

normal distribution. Also, note that the vector
[
Â B̂

]T
is independent from S2

e , since each
element of the vector is independent from S2

e . Those observations lead to a test statistic
for a and b jointly, thereby enabling, for any α, confidence intervals with confidence levels
exactly equal to 1 − α or tests with significance exactly equal to α. Like the sampling
distribution of S2

e , we also skip presenting such tests or confidence intervals for the time
being. We will see those techniques in the more general setting of the multiple normal
linear regression model with k ≥ 1 predictors; the application to k = 1 should be clear
from then on.

Inference for σ2: For inference on σ2, S2
e can be used, as it does not depend on the

other unknown parameters. Recall from Theorem 3.5 that

S2
e (n− 2)

σ2
∼ χ2

n−2. (3.31)

The test statistic given in (3.31) can be used to obtain confidence intervals or tests for a
value for σ2. We will not state them here to avoid repetition; see Exercise 1.17 for such
tests (and confidence intervals), with the degrees of freedom changed from n− 1 to n− 2.

A.3.5 Estimation and prediction at a new predictor

Recall that one of the main aims of linear regression is the prediction of Y0 given a new
predictor variable x0. There are two ways of expressing our prediction. The first is in
terms of confidence intervals for the population mean at x0, and the other is the prediction
interval for the observation Y0 itself.

Confidence interval for the population mean at a specified x0: When a new
point x0 is given, consider Â+ B̂x0 as an estimator of the population mean at x0, that is
E(Y |x0) = a+ bx0.
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Exercise 3.24. Show that the estimator Â+ B̂x0 for E(Y |x0) = a+ bx0 is unbiased with
a normal distribution

Â+ B̂x0 ∼ N
(
a+ bx0, σ

2

(
1

n
+

(x0 − x̄)2

Sxx

))
(3.32)

Moreover, show that Â+ B̂x0 and S2
e are independent.

Once again, combining (3.32) with the residual sum of squares estimator S2
e of the

variance gives us a test statistic for a+ bx. Namely,

Â+ B̂x0 − a− bx0

Se

√
1
n

+ (x0−x̄)2

Sxx

∼ tn−2. (3.33)

Exercise 3.25. Derive a two-sided 100(1− α)%-CI for a+ bx0.

Prediction interval for the observation at a specified x0: Instead of estimating
the population function at x0, let us focus, instead, on prediction of an, as yet, unobserved
random variable. A typical scenario for prediction occurs when x0 is known but Y0 has
not been observed yet. For example, we have data for high school and university GPAs
of a number of the students in a school. A new high school graduate with a high school
GPA of x0 is considered for admission to the school. We want to predict this student’s
performance in the university, Y0, which is not observed yet.

Assume that the yet unobservable variable Y0 is paired with the predictor x0, and its
distribution is expressed as

Y0 = a+ bx0 + e0, e0 ∼ N (0, σ2).

where e0 is independent from e1, . . . , en, hence Y0 is independent from the observations so
far, Y1, . . . , Yn. Hence Y0 is independent from Â, B̂, and S2

e . Just like a+ bx0, the variable
Y0 can be predicted pointwise by Â + B̂x0 also. The ‘error’ variable Y0 − Â− B̂x0, being
a linear combination of independent normally distributed random variable, has a normal
distribution.

E(Y0 − Â− B̂x0) = a+ bx0 − a− bx0 = 0.

Var(Y0 − Â− B̂x0) = Var(Y0) + Var(Â− B̂x0) = σ2 + σ2

(
1

n
+

(x0 − x̄)2

Sxx

)
Using the independence between Y0 − Â− B̂x0 and S2

e , we have

Y0 − (Â+ B̂x0)

Se

√
1 + 1

n
+ (x0−x̄)2

Sxx

∼ tn−2. (3.34)

Exercise 3.26. Using (3.34), derive a prediction interval for Y0.
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A.3.6 Simultaneous estimation and confidence intervals

Let us return to estimating the population regression function E(Y |x) at a new point
x = x0. So far, we have looked at a single x0. A natural extension is to predict the
population regression function at multiple values for x. One way to build simultaneous
confidence intervals is to use Bonferroni correction. With points x01, . . . , x0m, we can state
that

P

a+ bxi ∈

Â+ B̂x0i ± tα/2m,n−2Se

√
1

n
+

(x0i − x̄)2

Sxx

 ,∀i = 1, . . . ,m

 ≥ 1− α.

When m is too large, the confidence intervals get unreasonably large. Besides, ideally, we
would like to have a confidence interval for all x’s and therefore draw a ‘confidence band’
around the fitted line. As a remedy, Scheffe derived confidence intervals for all x points
that simultaneously hold with probability 1− α.

Theorem 3.6 (Scheffe’s theorem for all values of x). Suppose we observe (x1, Y1), . . . , (xn, Yn),
and construct Â, B̂, and S2

e based on those observations. Then, we have

P

a+ bx ∈

Â+ B̂x±
√

2fα,2,n−2Se

√
1

n
+

(x− x̄)2

Sxx

 , ∀x ∈ R

 = 1− α.

Exercise 3.27. Houck (1970) studied the bismuth I–II transition pressure as a function
of temperature. The data are listed in the following table.

Pressure (bar) Temperature
25366 20.8
25356 20.9
25336 21.0
25256 21.9
25267 22.1
25306 22.1
25237 22.4
25267 22.5
25138 24.8
25148 24.8
25143 25.0
24731 34.0
24751 34.0
24771 34.1
24424 42.7
24444 42.7
24419 42.7
24417 49.9
24102 50.1
24092 50.1
25202 22.5
25157 23.1
25157 23.0

A simple normal linear regression model y = a+bx is to be fitted to the data, with y being
the pressure and x being the temperature.
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(a) Make a scatter plot of the data, where each pair is shown on the x− y plane. Limit
the x and y axes appropriately to improve visibility.

(b) Calculate x̄, ȳ, Sxx, Sxy, and Syy, and R2, the coefficient of determination, for these
data.

(c) Find the MLE estimates for a, b, and σ2.

(d) Find a 100(1− α)% confidence interval for b, with α = 0.1.

(e) Test the null hypothesis H0 : b = −40.

(f) In this part you will perform prediction: Calculate Sheffe’s simultaneous confidence
intervals for the population mean at all the integer values for x between 20 and
50. (You can increase the resolution if you wish.) Let the confidence interval at a
specified x value be (L(x), U(x)). Plot L(x) vs x and U(x) vs x on the same plot,
preferably together with the data pairs. What is supposed to appear in your figure
is the Scheffe band for the population mean between 20 and 50.

B Multiple normal linear regression

We have already started discussing the multiple linear regression model in Section A.2
where we introduced linear models and the best linear unbiased estimators for them. This
section revisits the linear model and presents the multiple normal linear regression model
as a special case. The simple linear regression model was extensively discussed in the earlier
section. We will see that many results for the simple linear regression model correspond
to a more general result for the multiple linear regression model. Provided that one is
confident in matrix-vector operations, dealing with the multiple linear regression model
can be even easier and complementary in terms of clarifying the specific results in the
simple linear regression model.

Let’s remind ourselves of the linear model

Y = Xβ + e (3.35)

where Y =
[
Y1 . . . Yn

]T
, X is a n × (k + 1) design matrix with rank k + 1, β =[

β0 . . . βk
]T

is the parameter vector and e =
[
e1 . . . en

]T
is the vector uncorrelated

noise terms with zero mean and common variance σ2. In parallel to the normal linear
regression model, let us assume further that

e ∼ N (0, σ2In), (3.36)

that is, each ei is independent and has N (0, σ2).

Exercise 3.28. Show that Y−Xβ
σ
∼ N (0, In).
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It is worth repeating that the multiple normal linear regression can be obtained with
a general k ≥ 1 and X being

X =


1 x1,1 . . . x1,k

1 x2,1 . . . x2,k
...

...
. . .

...
1 xn,1 . . . xn,k

 . (3.37)

B.1 Maximum likelihood estimation and properties

Recall that the best linear unbiased estimator for β is given by β̂ = (XTX)−1XTY . One
can show that this is also the maximum likelihood estimator for β. Given X and Y = y,
the log-likelihood function can be written as

`(β, σ2;X, y) = −n
2

[log 2π + log σ2]− 1

2σ2
(y −Xβ)T (y −Xβ).

Exercise 3.29. Show that the maximum likelihood estimators for β and σ2 are given as

β̂ = (XTX)−1XTY, σ̂2 =
1

n
(Y −Xβ̂)T (Y −Xβ̂)

With this estimator of β, we can consider the predictions of Yi’s (not in the real sense,
since Yi’s are already given), which are given by

Ŷ = Xβ̂ = X(XTX)−1XTY.

Sometimes, the matrix X(XTX)−1XT is referred to as the “hat matrix”, since it produces
Ŷ . In the subsequent discussion, we will refer to the hat matrix several times, so let us
define it for convenience, as

H = X(XTX)−1XT .

Define the vector of residuals
ê = Y −HY. (3.38)

The residual sum of squares of those residuals can be written as

RSS =
n∑
i=1

ê2
i = êT ê = ‖Y − Ŷ ‖2

2 = (Y − Ŷ )T (Y − Ŷ ) (3.39)

= (Y −HY )T (Y −HY ). (3.40)

It turns out that σ̂2 is a biased estimator of σ2, with expectation E(σ̂2) = n−k−1
n

σ2. Hence,
similarly to the simple normal linear regression model, we propose

S2
e =

1

n− k − 1
(Y −Xβ̂)T (Y −Xβ̂) =

RSS

n− k − 1
.
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Theorem 3.7. The estimators β̂ and S2
e have the following properties:

• The estimator β̂ is an unbiased estimator of β with a multivariate normal distribution

β̂ ∼ N (β, σ2(XTX)−1) (3.41)

• The estimator S2
e is an unbiased estimator of σ2 satisfying

S2
e (n− k − 1)

σ2
∼ χ2

n−k−1.

• β̂ and S2
e are independent.

We will prove each item of Theorem 3.7 in turn.

B.1.1 Distribution of β̂

Unbiasedness of β̂ was stated in Exercise 3.7 under looser assumptions (uncorrelated and
zero mean noise, normality is not necessary). Moreover, being a linear combination of Y ,
β̂ has a normal distribution and its covariance is given by

Cov(β̂) = Cov((XTX)−1XTY )

= [(XTX)−1XT ]σ2In[(XTX)−1XT ]T

= σ2(XTX)−1XTX(XTX)−1

= σ2(XTX)−1.

Therefore,
β̂ ∼ N (β, σ2(XTX)−1) (3.42)

B.1.2 Distribution of S2
e

Here, Cochran’s theorem comes to help.

Theorem 3.8 (Cochran’s theorem). Let Z =
[
Z1 . . . Zn

]T
be a vector of i.i.d. random

variables with a standard normal distribution, Zi ∼ N (0, 1), and Q1, Q2, . . . , Qm be a
collection of positive semidefinite matrices satisfying

∑m
i=1Qi = In. Further, suppose that

r1 + . . . + rm = n, where ri is the rank of Qi. Finally, define the random variables of
quadratic form

Vi = ZTQiZ, i = 1, . . . ,m

Then, all Vi’s are independent and have chi-square distributions with

Vi ∼ χ2
ri
, i = 1, . . . ,m.
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As it is clear from the theorem, the result requires the existence of positive definite
matrices Q1, . . . , Qm that sum to the identity matrix. While it can be difficult to find such
matrices for general m, the task gets easier for m = 2 thanks to idempotent matrices.

Definition 3.10 (Idempotent matrices). A square matrix P is idempotent if PP = P .

There are two properties of an idempotent matrix, which is relevant to finding positive
definite matrices m = 2.

Proposition 3.1. The following hold for idempotent matrices

• If P is idempotent and symmetric, it is positive semidefinite.

• If P is idempotent, In − P is idempotent, too.

Exercise 3.30. Prove Proposition 3.1.

Therefore, once we find an idempotent and symmetric matrix P , we can use Cochran’s
theorem with Q1 = P and Q2 = In − P .

With reference to Cochran’s theorem, take Z = Y−Xβ
σ

which was shown to haveN (0, In)
in Excercise 3.28. Further, consider m = 2 with Q1 = H and Q2 = In −H. Obviously, by
construction, Q1 +Q2 = In. In order to use Cochran’s theorem with those Q1, Q2, we also
have to make sure that each Qi is both positive semidefinite. At this point, we show that
Q1 and Q2 are idempotent. Indeed,

Q1Q1 = HH = X(XTX)−1XTX(XTX)−1XT

= X(XTX)−1(XTX)(XTX)−1XT

= X(XTX)−1XT

= H = Q1,

so Q1 is idempotent. By Proposition 3.30, Q2 = I −H is also idempotent. Furthermore,
since Q1 and Q2 are symmetric, they are positive semidefinite, by the same Proposition
3.30. Therefore, by Cochrans theorem we have the following result.

Corollary 3.2. For the linear model with normal errors, if X has rank k + 1, so that the
hat matrix H = X(XTX)−1XT is well defined and has rank k + 1, we have

1

σ2
(Y −Xβ)TH(Y −Xβ) ∼ χ2

k+1, and
1

σ2
(Y −Xβ)T (I −H)(Y −Xβ) ∼ χ2

n−k−1.

Furthermore, the quantities (Y −Xβ)TH(Y −Xβ) and (Y −Xβ)T (I −H)(Y −Xβ) are
independent.

We have not said anything about the distribution of the RSS yet, but we are close to
doing that. It turns out that the second quantity in the above corollary is the RSS in
(3.40), scaled by 1

σ2 . Expanding the quantity, we get

(Y −Xβ)T (I −H)(Y −Xβ) = Y T (I −H)Y − 2βTXT (I −H)Y + βTXT (I −H)Xβ.
(3.43)
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At this point, we can show that the second and the third terms in (3.43) are equal to zero,
by showing that the matrix (I − H)X, that is commonly found in those terms, is a zero
matrix.

XT (I −H) = XT −XTX(XTX)−1XT = XT −XT = 0.

Therefore, we ended up with

(Y −Xβ)T (I −H)(Y −Xβ) = Y T (I −H)Y (3.44)

But the expression in (3.44) is equal RSS at β̂ given in (3.40). Check that

êT ê = (Y −HY )T (Y −HY ) = Y TY − Y T (HT +H)Y + Y THTHY

= Y TY − 2Y THY + Y THY

= Y TY − Y THY

= Y T (I −H)Y

where we used that facts that H is symmetric and idempotent. As a result, we have the
following Corollary of Cochran’s theorem for the residual sum of squares.

Corollary 3.3. With the residual vector given in (3.38), we have

S2
e (n− k − 1)

σ2
=

RSS

σ2
=

∑n
i=1 ê

2
i

σ2
∼ χ2

n−k−1.

B.1.3 Independence between β̂ and S2
e

Proving the independence claims in Theorem 3.5 is also easy in the general setting. All we
need to show is that β̂ and ê are independent.

Theorem 3.9. β̂ and ê are independent.

Proof. First, note that both β̂ = DY , where D = (XTX)−1XT , and ê = Y − HY =
(I − H)Y are linear combinations of Y , and they jointly have a normal distribution.
Therefore, it suffices to show that β̂ and ê are uncorrelated, that is, their covariance is a
zero matrix. For that, we write

Cov(β̂, ê) = Cov(DY, (I −H)Y )

= DCov(Y, Y )(I −H)T

= Dσ2In(I −H)

= σ2D(I −H)

= σ2
{

[(XTX)−1XT ]− [(XTX)−1XTX(XTX)−1XT ]
}

= σ2
{

[(XTX)−1XT ]− [(XTX)−1XT ]
}

= 0.

Hence, we are done.
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Independence between β̂ and S2
e is merely a direct consequence of Theorem 3.9.

Corollary 3.4. β̂ and S2
e are independent.

Proof. Since S2
e is a function of ê, and β̂ is independent from ê by Theorem 3.9, β̂ is also

independent from S2
e .

We can also show that the ‘predicted’ (or fitted) values Ŷ and ê are also independent.

Theorem 3.10. Ŷ and ê are independent.

Proof. First, note that both Ŷ = HY and ê = Y −HY = (I−H)Y are linear combinations
of Y , and they jointly have a normal distribution. Therefore, it suffices to show that Ŷ
and ê are uncorrelated, that is, their covariance is a zero matrix. For that, we write

Cov(Ŷ , ê) = Cov(HY, (I −H)Y )

= HCov(Y, Y )(I −H)T

= Hσ2I(I −H)

= σ2H(I −H) = σ2(H −H2) = σ2(H −H) = 0.

Hence, we are done.
Note that an alternative proof based on Theorem 3.9 is available. Ŷ = Xβ̂ is a function

of β̂, which is shown to be independent of ê by Theorem 3.9, hence Ŷ is also independent
from ê.

B.2 Relation to the simple linear model

I would like the reader to acknowledge (once again) the generality of the normal linear
model, in particular, how it accommodates the multiple normal linear regression model with
normally distributed error. Many results stated for the multiple normal linear regression
model can be stated as a property of the general normal linear model given in (3.35) and
(3.36).

The application of the above analysis to the simple normal linear regression model
should be clear: The simple normal linear regression model is obtained by taking k = 1
(one predictor), and the variables as

X =


1 x1

1 x2
...

...
1 xn

 , Y =


Y1

Y2
...
Yn

 , β =

[
a
b

]
, e =


e1

e2
...
en

 . (3.45)

with e ∼ N (0, σ2In). Clearly, the estimator vector is β̂ =
[
Â B̂

]T
. Further, the residuals

êi = Yi − a− bxi can be written in compact form as

ê = Y −HY
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where H = X(XTX)−1XT . This rewriting is to emphasise that the simple normal linear
regression model can be cast as a linear normal model.

The normal linear model enables us to study both simple and multiple normal linear
regression models in one common setting. For example, unbiasedness of β̂ directly implies
unbiasedness of Â and B̂ in the simple normal linear regression model, so we really did not
need to prove unbiasedness for Â and B̂ separately. Moreover, the normal distribution of
β̂ stated in equation (3.42) summarises the results that we have shown separately for the
simple normal linear regression model (with k = 1), namely the results that Â and B̂ are
unbiased, normally distributed with covariances in Theorem 3.5. Furthermore, we have
generalised the unbiased estimator for the variance to general k ≥ 1 as S2

e = 1
n−k−1

∑
i=1 ê

2
i .

We have proven the unbiasedness claim for S2
e in Theorem 3.5, even in a more general

setting of normal linear models, and showed that (n− k − 1)S2
e/σ

2 ∼ χ2
n−k−1.

For the simple normal linear regression model, we have k = 1 predictor variable, hence
the estimator for the variance reduces to

S2
e =

1

n− 2

∑
i=1

ê2
i =

RSS

n− 2
.

with S2
e (n − 2)/σ2 ∼ χ2

n−2. The independence of S2
e from Â and B̂ separately is also a

consequence of a more general result, namely the one that states the independence between
β̂ and S2

e .

B.3 Tests for β:

B.3.1 Testing for linear regression (at all)

Arguably, the first thing we should test when we obtain the data X and Y should be the
existence of a linear relationship whatsoever. That corresponds to the null hypothesis

H0 : β1 = . . . = βk = 0, H1 : at least one βi is non-zero

To test this null hypothesis, we make use of an intermediate result, which is related to
the partitioning of the total sum of squares. As the following Theorem 3.11 shows, the
partitioning of the total sum of squares extends to the multiple linear regression case. We
can show that even for the general linear model we have that partitioning provided that
1, the vector of all 1’s, is in the column space of X.

Theorem 3.11. Consider the linear model in (3.35). Suppose X a n× (k + 1) matrix of
rank (k + 1), and there exists a vector v ∈ R(k+1)×1 such that Xv = 1, that is, 1 is in the
column space of X. Then, the sum of squares is partitioned as

n∑
i=1

(Yi − Ȳ )2 =
n∑
i=1

(Yi − Ŷi)2 +
n∑
i=1

(Ŷi − Ȳ )2 (3.46)

Furthermore,
∑n

i=1(Yi − Ŷi)2 and
∑n

i=1(Ŷi − Ȳ )2 are independent.
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Proof. Define the n × n matrix U = 1
n
1n1

T
n . This is in fact an operator on a vector v,

which returns a vector whose elements are all the same and equal to v̄. Observe that U is
symmetric, and idempotent, since U2 = 1

n2 1n1
T
n1n1

T
n = 1

n2 1nn1Tn = U . As a result, I − U
is also idempotent. Then, we can write

n∑
i=1

(Yi − Ȳ )2 = [(I − U)Y ]T [(I − U)Y ] = Y T (I − U)T (I − U)Y = Y T (I − U)Y

n∑
i=1

(Ŷi − Ȳ )2 = [(H − U)Y ]T [(H − U)Y ] = Y T (H − U)T (H − U)Y = Y T (H − U)2Y

n∑
i=1

(Yi − Ŷi)2 = [(I −H)Y ]T [(I −H)Y ] = Y T (I −H)(I −H)Y = Y T (I −H)Y

Using those relations, we check for the equality by considering the difference

n∑
i=1

(Yi − Ȳ )2 −
n∑
i=1

(Ŷi − Ȳ )2 −
n∑
i=1

(Yi − Ŷi)2

= Y T (I − U)Y − Y T (H − U)T (H − U)Y − Y T (I −H)Y

= Y T (I − U)Y − Y T (H − 2UH + U)Y − Y T (I −H)Y

= Y T [I − 2U +H + 2UH − I +H]Y

= −2Y TU(I −H)Y = −2Y T 1

n
11T (I −H)Y = −(2Y T 1

n
1)(1T I − 1TH)Y

Now, H1 = X(XTX)−1XT1 is the projection of 1 onto the space spanned by the columns
of X. (Look up for projection matrices). But since 1 is in the column space of X, H1 = 1.
This results in

(1T I − 1TH) = (1−H1)T = (1− 1)T = 0T .

Therefore, we have −(2Y T 1
n
1)(1T I − 1TH)Y = 0, proving the partitioning.

Next, the independence relation: First, note that (H − U)Y and (I − H)Y are both
linear combinations of Y and hence they are jointly normal. Also check that their cross-
covariance is

Cov((H − U)Y, (I −H)Y ) = (H − U)Cov(Y, Y )(I −H)

= (H − U)σ2I(I −H)

= σ2(I −H)(H − U)

= σ2(H − U −H2 +HU)

= σ2(H − U −H +HU)

= σ2(U −HU).

Since U is a matrix of all 1’s, every column of U is in the column space of X, hence
HU = U , and as a result, we get

Cov((H − U)Y, (I −H)Y ) = 0.
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Therefore, (H −U)Y and (I −H)Y are independent. This implies that ‖(H −U)Y ‖2
2 and

‖(I −H)Y ‖2
2, which are the first and second terms on the RHS of the partitioning are also

independent. Hence we have proven the claim.

Theorem 3.11 immediately implies the partitioning for multiple linear regression model,
which has an X matrix whose first column is all 1’s. In the multiple linear regression model,
the terms in the partitioning have specific names, in parallel to the simple linear regression
model.

Corollary 3.5. Let X be a design matrix for multiple normal linear regression model as
in (3.37), Then, we have (3.46), with specific names for the terms involved,

n∑
i=1

(Yi − Ȳ )2

︸ ︷︷ ︸
TSS

=
n∑
i=1

(Yi − Ŷi)2

︸ ︷︷ ︸
RSS

+
n∑
i=1

(Ŷi − Ȳ )2

︸ ︷︷ ︸
RegSS

Furthermore, ResidSS and RegSS are independent.

Theorem 3.12. Suppose we have a multiple normal linear regression model. Under the
null hypothesis

H0 : β1 = . . . = βk = 0,

that is, there is no regression on any of the predictors (only the intercept parameter is
allowed to be non-zero), we have

TSS

σ2
∼ χ2

n−1,
RSS

σ2
∼ χ2

n−k−1,
RegSS

σ2
∼ χ2

k.

Furthermore, the second and the third terms are independent.

Proof. The first result should be obvious, since the model reduces to Yi = β0 + ei under
H0, random variables from a simple normal population. In the second one, the quantity in
question is RSS/σ2, which has already been shown to have a χ2

n−k−1 distribution, regardless
of the value of β. For the last claim, we make use of Theorem 3.11, which states that the
terms on the right-hand side are independent. Also by Theorem 3.11, the first quantity is
equal to the sum of the second and the third quantities. Hence, by the result in part (b)
of Exercise 1.5, we subtract the degrees of freedom to get n − 1 − (n − k − 1) = k to get
the degrees of freedom.

We have already seen in Theorem 3.12, the partitioning in Theorem 3.11 is relevant
when we test the existence of a linear relationship whatsoever. Under H0 : β1 = . . . =
βk = 0, the test statistic

RegSS/k

RSS/(n− k − 1)
∼ fk,n−k−1.

Therefore, the critical region

C =

{
RegSS/k

RSS/(n− k − 1)
≥ fα,k,n−k−1

}
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can be used to test H0 at a significance level of α.
In the following, we will discuss more general tests; specifically, tests for one, all, or

some components of β, as well as any linear combination of β.

B.3.2 Tests for a single component of β:

Recall that β̂ has a normal distribution, β̂ ∼ N (β, σ2(XTX)−1). Therefore, for each
component, we have

β̂i ∼ N (βi, σ
2[(XTX)−1]ii).

Combining the (n− k − 1)S2
e/σ

2 ∼ χ2
n−k−1, we have the statistic

β̂i − βi
Se
√

[(XTX)−1]ii
∼ tn−k−1.

One can use this to have a confidence interval for βi or conducting a t-test for a given value
of βi. For example, the interval

CIβi = β̂i ± tα/2,n−k−1Se
√

[(XTX)−1]ii (3.47)

is a 100(1− α) confidence interval for βi.

B.3.3 Testing for the whole β

Recall that β̂ has a normal distribution, β̂ ∼ N (β, σ2(XTX)−1). An essential result
regarding β̂ is the following:

Theorem 3.13. We have 1
σ2 (β̂ − β)TXTX(β̂ − β) ∼ χ2

k+1.

The proof of this theorem can be done by following the steps below. Firstly, as for any
positive definite matrix, there is a unique square root L =

√
XTX such that we can write

XTX = LL

for some (k + 1) × (k + 1) positive definite matrix L. Since L is positive definite, L−1

exists, and L−1L−1 = (L2)−1 = (XTX)−1. Furthermore, since XTX is symmetric, L is
symmetric, too, that is, LT = L. The square root allows standardization of β.

Exercise 3.31. Follow the steps below to prove Theorem 3.13.

1. Show that for any m×n matrix A and a n×1 random vector U , we have Cov(AU) =
ACov(U)AT .

2. Suppose X is of rank k + 1 and let L =
√
XTX. Show that 1

σ
L(β̂ − β) ∼ N (0, I).

[Hint: Use the first part and write (XTX)−1 = L−1L−1.]

3. Using the previous part, prove Theorem 3.13.
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Using Theorem 3.13, we can have a confidence region for β̂. Note that the statistic

(β̂ − β)TXTX(β̂ − β)/(k + 1)

S2
e

∼ fk+1,n−k−1 (3.48)

Therefore, the set

CRβ =
{
β ∈ Rk+1 : (β̂ − β)TXTX(β̂ − β) ≤ (k + 1)fα,k+1,n−k−1S

2
e

}
(3.49)

is a 100(1− α)% confidence region for β.

Exercise 3.32. Prove the claim above about the confidence region, that is, show that
P (β ∈ CRβ) = 1− α.

The confidence region can be used to derive confidence intervals for all βi’s that simul-
taneously hold with at least 1− α probability. This is thanks to the following lemma.

Lemma 3.4. Let A be a m × m positive definite matrix and c > 0 be a constant. For
every z, u ∈ Rm×1, we have

zTAz ≤ c2 ⇒ |zTu| ≤ c
√
uTA−1u

Exercise 3.33. Applying Lemma 3.4 with A = XTX, c2 = (k+1)fα,k+1,n−k−1S
2
e , z = β̂−β,

and ui = (0, . . . , 0︸ ︷︷ ︸
i times

, 1, 0, . . . , 0︸ ︷︷ ︸
k − i times

)T for each i = 0, . . . , k, show that

P

(∣∣∣βi − β̂i∣∣∣ ≤√(k + 1)fα,k+1,n−k−1 × Se
√

[(XTX)−1]ii, for i = 0, . . . , k

)
(3.50)

simultaneously hold for all i = 0, . . . , k with probability at least 1− α.

Compare the CI for βi in (3.47) and the simultaneous confidence intervals implied by
(3.50). As expected, the first one is smaller. This is because the first one is designed for
only βi while the latter is designed to hold simultaneously with k other confidence intervals
for the other βj’s with no less than 1−α probability. If we wanted the confidence intervals
in (3.47) for every βi to hold simultaneously with a probability of at least 1−α, we would
have to adjust the α value in each and have to modify the confidence intervals as

β̂i ± tα/2(k+1),n−k−1Se
√

[(XTX)−1]ii.

A comparison between tα/2(k+1),n−k−1 and
√

(k + 1)fα,k+1,n−k−1 would yield the approach
one should go for in order to have simultaneous confidence intervals. (Obviously, we should
use the ones yielding shorter intervals.)
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B.3.4 Testing a part of β

Here, we will focus on testing null hypotheses which claim that some components of re-
gression parameters β are zero. For example,

H0 : βq+1 = . . . = βk = 0, vs H1 : not H0

This null hypothesis corresponds to the claim that the predictor variables x1,j, . . . , xn,j for
j > q do not play any role in the regression model, in other words, they are not ‘predictors’.
(Typically β0 is not of much interest.)

A generalised partitioning with extra sum of squares: Consider the normal linear
model, Y ∼ N (Xβ, σ2I). Given the matrix X, let U1 and U2 be sub-matrices of X
formed by a subset of the columns of X such that, all columns of U1 reside in U2. (For
example U1 and U2 are formed by the first two and three columns of X, respectively.)
Let β̂1 = (UT

1 U1)−1UT
1 Y , β̂2 = (UT

2 U2)−1UT
2 Y . Also, define H1 = U1(UT

1 U1)−1UT
1 and

H2 = U2(UT
2 U2)−1UT

2 , and Ŷ1 = H1Y , and Ŷ2 = H2Y . Also, recall the usual estimates β̂
and Ŷ = Xβ̂.

The following lemma is useful in the derivations to follow.

Lemma 3.5. For projection matrices constructed as above, we have

H1 = H2H1 = H1H2.

Proof. Let v be any vector. H1v is the projection of v onto the space spanned by the vectors
in U1. Since the space spanned by the vectors in U1 is a subset of the space spanned by
the vectors in U2, we have H2(H1v) = H1v. Hence the first equation is satisfied. Since this
is true for any v, we have H1 = H2H1.

For the other equality, note that v = H2v + ve, where ve is the residual from the
projection. It can be proven that ve is orthogonal to the columns of U2. This implies that
ve is orthogonal to columns of U1, too. As a result, we have H1v = H1(H2v+ve) = H1H2v.
Since this is true for any v, we have H1 = H1H2.

We can extend the partitioning theorem as follows.

Theorem 3.14 (Partitioning with extra sum of squares). For U1, U2, and the following
quantities defined above, we have

n∑
i=1

(Yi − Ŷ1,i)
2 =

n∑
i=1

(Yi − Ŷ2,i)
2 +

n∑
i=1

(Ŷ2,i − Ŷ1,i)
2

Moreover, the terms
∑n

i=1(Yi − Ŷ2,i)
2 and

∑n
i=1(Ŷ2,i − Ŷ1,i)

2 are independent.
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Proof. In the proof we will use the relations H2
1 = H1, H2

2 = H2, (I − H1)2 = I − H1,
(I −H2)2 = I −H2, H1H2 = H2H1 = H1, and HT

1 = H1 and H2 = HT
2 . For the first term,

we have
n∑
i=1

(Yi − Ŷ1,i)
2 = (Y −H1Y )T (Y −H1Y ) = Y T (I −H1)Y.

Similarly, for the second term, we have

n∑
i=1

(Yi − Ŷ2,i)
2 = Y T (I −H2)Y.

For the third term, we have

n∑
i=1

(Ŷ1,i − Ŷ2,i)
2 = (H1Y −H2Y )T (H1Y −H2Y ) = Y T (H1 +H2 − 2H1H2)Y.

= Y T (H1 +H2 − 2H1)Y.

= Y T (H2 −H1)Y.

where the second line is due to Lemma 3.5. Checking for the difference between the first
and the sum of the second and third terms, we get

Y T (I −H1)Y − Y T (I −H2)Y − Y T (H2 −H1)Y = 0

Hence, we have proven the partitioning. For independence,

Cov((Y −H2Y ), (H1Y −H2Y )) = Cov((I −H2)Y, (H1 −H2)Y )

= σ2(I −H2)(H1 −H2)

= σ2(H1 −H2 −H2H1 +H2H2)

= σ2(H1 −H2 −H1 +H2) = 0.

where the third line is since H2 is idempotent and H1H2 = H1. Since the random vari-
ables (I − H2)Y and (H1 − H2)Y are jointly normal, by their uncorrelatedness, they are
independent.

It is possible to partition the left-hand side into even smaller bits and show indepen-
dence among those bits.

Theorem 3.15. Let U1, . . . , Um be formed from the columns in such a way that, for every
j > i, any column of Ui can also be found in Uj. Then

n∑
i=1

(Yi − Ŷ1,i)
2 =

n∑
i=1

(Yi − Ŷm,i)2 +
m∑
j=2

[
n∑
i=1

(Ŷj,i − Ŷj−1,i)
2

]

and all the sum of squares on the right hand side,
∑n

i=1(Yi−Ŷm,i)2, and
∑n

i=1(Ŷj,i−Ŷj−1,i)
2,

j = 2, . . . ,m are independent.
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Proof. Note that the second term on the right hand side of Theorem 3.14 can be expanded
by using the same theorem, and yields

n∑
i=1

(Yi − Ŷ1,i)
2 =

n∑
i=1

(Yi − Ŷ2,i)
2 +

n∑
i=1

(Ŷ2,i − Ŷ1,i)
2

=
n∑
i=1

(Yi − Ŷ3,i)
2 +

n∑
i=1

(Ŷ3,i − Ŷ2,i)
2 +

n∑
i=1

(Ŷ2,i − Ŷ1,i)
2

Continuing until m, we have the recursion. For independence, note that Ŷj − Ŷj−1 =
(Hj −Hj−1)Y . Therefore, for j < j′,

Cov((Hj −Hj−1)Y, (Hj′ −Hj′−1)Y ) = σ2(Hj −Hj−1)(Hj′ −Hj′−1)

= σ2(HjHj′ −HjHj′−1 −Hj−1Hj′ +Hj−1Hj′−1)

= σ2(Hj −Hj −Hj−1 +Hj−1) = 0.

since j′ − 1 ≥ j and we can use either idempotency of Hj or Lemma 3.5. Combining

with the fact that Ŷj − Ŷj−1 and Ŷj′ − Ŷj′−1 are jointly normal, we prove that they are
independent, so are their norm squares. Finally, for any j, we need to prove independence
between

∑n
i=1(Ŷj,i − Ŷj−1,i)

2 and
∑n

i=1(Yi − Ŷm,i)2 , which is implied by the independence

between Ŷj − Ŷj−1 = (Hj − Hj−1)Y and Y − Ŷm = (I − Hm)Y . We show it in the same
fashion, by checking the covariance

Cov((I −Hm)Y, (Hj −Hj−1)Y ) = σ2(Hj −Hj−1 −HmHj +HmHj−1)

= σ2(Hj −Hj−1 −Hj +Hj−1) = 0

as desired.

Application to multiple linear regression: Theorem 3.14 implies several results for
the multiple normal linear regression model. We can gather the most important ones into
a theorem. Let X be a design matrix for the multiple normal linear regression model as
in (3.37). For each i = 1, . . . , k, let

Ui =


1 x1,1 . . . x1,i

1 x2,1 . . . x2,i
...

...
. . .

...
1 xn,1 . . . xn,i

 , i = 1, . . . , k.

Also, let Hi = Ui(U
T
i Ui)

−1UT
i . and Ŷi = HiY . Finally, let H = X(XTX)−1XT and

Ŷ = HY as usual. For any 1 ≤ m ≤ m′ ≤ k, define the regression sum of squares and
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residual sum of squares based on Um as

RegSS(1, . . . ,m) =
n∑
i=1

(Ŷm,i − Ȳ )2, (3.51)

RSS(1, . . . ,m) =
n∑
i=1

(Yi − Ŷm,i)2 (3.52)

and note that RegSS = RegSS(1, . . . , k) and RSS = RSS(1, . . . , k). Next, define also the
extra sum of squares

RegSS(m+ 1|1, . . . ,m) = RegSS(1, . . . ,m+ 1)− RegSS(1, . . . ,m) (3.53)

RegSS(m+ 1, . . . ,m′|1, . . . ,m) =
m′∑

j=m+1

RegSS(j|1, . . . , j − 1). (3.54)

Using those definitions, it is not hard to see that

RegSS(m+ 1, . . . , k|1, . . . ,m) = RegSS− RegSS(1, . . . ,m) (3.55)

Theorem 3.16. For any 1 ≤ m ≤ m′ ≤ k, we have the following three main results.

1. TSS = RegSS(1, . . . ,m) + RSS(1, . . . ,m),

2. RegSS(m+ 1, . . . ,m′|1, . . . ,m) =
∑n

i=1(Ŷm′,i − Ŷm,i)2.

3. RegSS(1),RegSS(2|1), . . . ,RegSS(m|1, . . . ,m − 1) and RSS(1, . . . ,m′) are all inde-
pendent.

Corollary 3.6. For any 1 ≤ m ≤ k, we have

RegSS = RegSS(1, . . . ,m) + RegSS(m+ 1, . . . , k|1, . . . ,m), (3.56)

and RegSS(m+ 1, . . . , k|1, . . . ,m), RegSS(1, . . . ,m), and RSS are independent.

Lemma 3.6. Under the null hypothesisH0 : βm+1 = . . . = βk = 0, we have 1
σ2 RSS(1, . . . ,m) ∼

χ2
n−m−1.

Proof. Under H0 : βm+1 = . . . = βk = 0, Xβ = Umηm, where ηm =
[
β0 β1 . . . βm

]T
.

Recall that

RSS(1, . . . ,m) =
n∑
i=1

(Yi − Ŷm,i)2 = Y T (I −Hm)Y

Also, we have Y −Umηm ∼ N (0, σ2I), and the rank of Hm is m+1. Therefore, by Cochran’s
theorem,

1

σ2
(Y − Umηm)T (I −Hm)(Y − Umηm) ∼ χ2

n−m−1.
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All we have to do is to show the equality between (Y − Umηm)T (I −Hm)(Y − Umηm) and
RSS(1, . . . ,m).

(Y −Umηm)T (I−Hm)(Y −Umηm) = Y T (I−Hm)Y −2ηTmU
T
m(I−Hm)Y +ηTmU

T
m(I−Hm)Umηm

We show that the second and third terms are zero, since

UT
m(I −Hm) = UT

m − UT
mUm(UT

mUm)−1UT
m = UT

m − UT
m = 0.

Hence, we have shown that

(Y − Umηm)T (I −Hm)(Y − Umηm) = Y T (I −Hm)Y

and thus proven the claim.

Back to testing a part of β: Now we can state the result that enables testing a part
of β.

Theorem 3.17. Under the null hypothesis H0 : βm+1 = . . . = βk = 0, we have

1

σ2
RegSS(m+ 1, . . . , k|1, . . . ,m) ∼ χ2

k−m,

independently from RSS, and therefore

RegSS(m+ 1, . . . , k|1, . . . ,m)/(k −m)

RSS/(n− k − 1)
∼ fk−m,n−k−1. (3.57)

Proof. By the first item of Theorem 3.16, we can write

RSS + RegSS = RSS(1, . . . ,m) + RegSS(1, . . . ,m)

for any value of m, or

RSS(1, . . . ,m) = RSS + RegSS− RegSS(1, . . . ,m).

Substituting (3.56) in Corollary 3.6 into the relation, we have

RSS(1, . . . ,m) = RSS + RegSS(m+ 1, . . . , k|1, . . . ,m). (3.58)

Regardless of the null hypothesis, we have RSS/σ2 ∼ χ2
n−k−1. By Lemma 3.6, we also

have RSS(1, . . . ,m)/σ2 ∼ χ2
n−m−1. Furthermore, by corollary By Corollary 3.6, RSS and

RegSS(m+1, . . . , k|1, . . . ,m) are independent. Therefore, RegSS(m+1, . . . , k|1, . . . ,m)/σ2

must have a chi-sqaured distribution also, with degrees of freedom being the difference
n−m− 1− (n− k − 1) = k −m. Hence, we have proven the claim.

In fact, the test statistic in (3.57) can be shown to be the test statistic of the likelihood
ratio test for the null hypothesis H0 : βm+1 = . . . = βk = 0. For a likelihood ratio test of
size α, the critical region is{

RegSS(m+ 1, . . . , k|1, . . . ,m)/(k −m)

RSS/(n− k − 1)
> fα,k−m,n−k−1

}
. (3.59)
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B.3.5 Testing for any linear combination of β

All the tests for β we have seen so far can be written in terms of a r × (k + 1) full rank
matrix C with rank r, and a vector r × 1 vector c0 as

H0 : Cβ = c0, H1 : Cβ 6= c0. (3.60)

Note that Cβ̂ has a normal distribution with Cβ̂ ∼ N (Cβ, σ2C(XTX)−1CT ). Using
Theorem 3.13 but with the new covariance matrix, it can be shown that

1

σ2
(Cβ̂ − Cβ)T [C(XTX)−1CT ]−1(Cβ̂ − Cβ) ∼ χ2

r

Combining this with the estimator S2
e for σ2, which is independent from Cβ̂, we have

(Cβ̂ − Cβ)T [C(XTX)−1CT ]−1(Cβ̂ − Cβ)/r

S2
e

∼ fr,n−k−1.

A 100(1− α)% confidence region for Cβ is given by

CRCβ =
{
Cβ : (Cβ̂ − Cβ)T [C(XTX)−1CT ]−1(Cβ̂ − Cβ) ≤ rS2

efα,r,n−k−1

}
(3.61)

A test based on CRCβ would reject H0 if c0 is not in CRCβ, that is, the critical region is

{(Cβ̂ − c0)T [C(XTX)−1CT ]−1(Cβ̂ − c0) > rS2
efα,r,n−k−1}. (3.62)

This can be shown to be the likelihood ratio test for the hypotheses in (3.60).

Equivalence of the tests: We will show that the test developed in Section B.3.5 for any
linear combination of β is equivalent to the tests we have derived separately for a single,
all, or some components of β.

• For the null hypothesis H0 : βi = βi0, the corresponding parameters are r = 1,
c0 = βi0, and C is a 1× (k + 1) vector whose i+ 1’th element is 1 and the rest of its
elements are zero. It is left to the reader that, the resulting confidence interval CICβ
in (3.61) is equivalent to the one in (3.47).

• For a null hypothesis regarding the whole parameter β, in the form of H0 : β = ϑ0,
the corresponding parameters are r = k + 1, c0 = ϑ0, and C = Ik+1. It is left to the
reader that, the resulting confidence region CRCβ in (3.61) is equivalent to CRβ in
(3.49).

• For a null hypothesis regarding a part of β, such as H0 : βm+1 = . . . = βk = 0, the
corresponding r = k −m, c0 = 0(k−m)×1, and C is a (k −m)× (k + 1) matrix given
by

C =
[
0(k−m)×(m+1) Ik−m

]
(3.63)

The next theorem states the equivalence of the critical regions in (3.62) and (3.59).
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Theorem 3.18. The critical regions in (3.62) and (3.59), developed for the hypoth-
esis H0 : βm+1 = . . . = βk = 0, are exactly the same.

Proof. Observing (3.62) and (3.59), we can see that the denominators are equal
(RSS/(n−k−1) = S2

e ) and the critical values for the ratios are also equal (r = k−m).
Therefore, noting that c0 = 0 for the H0 in question, for the equality of the tests it
suffices to show that

RegSS(m+ 1, . . . , k|1, . . . ,m) = (Cβ̂)T [C(XTX)−1CT ]−1(Cβ̂)

with C given in (3.63) . For the term on the left hand side, we have

RegSS(m+ 1, . . . , k|1, . . . ,m) = RSS(1, . . . ,m)− RSS

= Y T (I −Hm)T (I −Hm)Y − Y T (I −H)T (I −H)Y

= Y T (I −Hm)Y − Y T (I −H)Y

= Y T (H −Hm)Y.

since the matrices I −H and I −Hm are symmetric and idempotent.

The term on the right-hand side is

(Cβ̂)T [C(XTX)−1CT ]−1(Cβ̂) = Y TX(XTX)−1CT [C(XTX)−1CT ]−1C(XTX)−1XTY.

= Y TV (V TV )−1V TY. (3.64)

where V = X(XTX)−1CT . (Check that V TV = C(XTX)−1XTX(XTX)−1CT =
C(XTX)−1CT , which is the expression in the brackets as in the first line of the
equation above.) The matrix Hm projects onto the space spanned by the first m+ 1
columns of X, and V (V TV )−1V T projects onto the space spanned by the last k−m
columns of X. In order to show that V (V TV )−1V T + Hm = H, it suffices to show
that V (V TV )−1V T and Hm are orthogonal. Noting that Xm = XC ′T with C ′ =[
Im+1 0(m+1)×(k−m)

]
, we check that

V TXm = C(XTX)−1XTXC ′T = CC ′T = 0

hence we are done.

B.4 Prediction

Given a new predictor vector x0 =
[
x00 . . . x0k

]T
, a point estimate of the population

regression function, which is the expected value of the response Y0, can be obtained as

xT0 β̂.

Obviously, this is an unbiased estimator of the population regression function at x0, since
E(xT0 β̂) = xT0 β. The distribution of β̂ allows us to have confidence intervals for xT0 β. For
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a single x0 vector, one can consider C = xT0 and use the confidence interval in (3.61).For
multiple x0 vector, Bonferroni correction can be consulted. In fact, thanks to Scheffe (once
again), one can have simultaneous predictions, i.e., simultaneous confidence intervals for
xT0 β for all x0.

Theorem 3.19 (Scheffe’s confidence intervals). The confidence intervals

xT0 β̂ ±
√

(k + 1)fα,k+1,n−k−1Se

√
xT0 (XTX)−1x0 (3.65)

for xT0 β hold simultaneously for all x0 with 1− α probability. In other words,

P

(∣∣∣xT0 (β − β̂)
∣∣∣ ≤√(k + 1)fα,k+1,n−k−1Se

√
xT0 (XTX)−1x0, for all x0

)
= 1− α.

Exercise 3.34. Heart catheterization is sometimes performed on children with congenital
heart defects. A Teflon tube (catheter) 3 mm in diameter is passed into a major vein or
artery in the femoral region and pushed up into the heart to obtain information about the
heart’s physiology and functional ability. The length of the catheter is typically determined
by a physician’s educated guess. In a small study involving 12 children, the exact catheter
length required was determined by using a fluoroscope to check that the tip of the catheter
had reached the pulmonary artery. The patients’ heights and weights were recorded. The
objective was to see how accurately catheter length could be determined by these two
variables. The data are given in the following table:

Height
(in.)

Weight
(in.)

distance to
pulmonary artery

(cm)
42.8 40.0 37.0
63.5 93.5 49.5
37.5 35.5 34.5
39.5 30.0 36.0
45.5 52.0 43.0
38.5 17.0 28.0
43.0 38.5 37.0
22.5 8.5 20.0
37.0 33.0 33.5
23.5 9.5 30.5
33.0 21.0 38.5
58.0 79.0 47.0

For the following questions, take α = 0.1. A normal multiple linear regression is considered
to model the relation between the height and weight of a child (predictors) and the distance
(response), in the form of

Yi = β0 + xi1β1 + xi2β2 + ei.
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(a) Calculate β̂ and S2
e , the estimators for the regression parameter vector β and the

variance σ2 of ei.

(b) Derive a confidence region for β.

(c) Derive confidence intervals for all components of β that hold simultaneously with
(1− α) probability.

(d) Test the null hypothesis that there is no linear regression of the distance variable on
the weight or height of a patient.

(e) Test the null hypothesis that the distance does not depend on the weight of the
patient.



Chapter 4

Bayesian Inference

Summary: In this chapter, we provide a brief introduction to Bayesian statistics. Some
quantities of interest that are calculated from the posterior distribution will be explained.
We will see some examples where one can find the exact form of the posterior distribution.
In particular, we will discuss conjugate priors that are useful for deriving tractable posterior
distributions. This chapter also introduces a relaxation in the notation to be adopted in the
later chapters.

A Introduction

Bayesian statistics is based on the Bayesian interpretation of probability, in which proba-
bility expresses a degree of belief in an event.

In Bayesian statistics, the unknown parameter, which is generically denoted by θ
throughout the course, is considered a random variable with a prior distribution. The
prior distribution formalises any form of a priori belief or information about the param-
eter before the data are collected. Being a probability distribution, the prior distribution
expresses the degree of belief in events regarding the unknown parameter. After obtaining
the data, the prior distribution is updated using the Bayes’ rule, yielding the posterior dis-
tribution. The posterior distribution expresses the a posteriori belief about the unknown
parameter.

A.1 A review of Bayes’ rule

Consider the probability space (Ω,F , P ). Given two sets A,B ∈ F , the conditional distri-
bution of A given B is

P (A|B) =
P (A ∩B)

P (B)
=
P (A)P (B|A)

P (B)
(4.1)

This result is known as Bayes’ theorem or Bayes’ rule. Here we see some examples where
Bayes’ rule is in action to calculate posterior probabilities.

Example 4.1 (Conditional probabilities of sets). A pair of fair (unbiased) dice are
rolled independently. Let the outcomes be X1 and X2.

90
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• It is observed that the sum is S = X1 + X2 = 8. What is the probability that the
outcome of at least one of the dice is 3?

We apply the Bayes rule: Define the sets A = {(X1, X2) : X1 = 3 or X2 = 3}.
B = {(X1, X2) : S = 8}, so that the desired probability is P (A|B) = P (A∩B)/P (B).

B = {(2, 6), (3, 5), (4, 4), (5, 3), (6, 2)}, A ∩B = {(3, 5), (5, 3)}.

Since the dice are fair, every outcome is equiprobable, having a probability of 1/36.
Therefore,

P (A|B) =
P (A ∩B)

P (B)
=

2/36

5/36
=

2

5
.

• It is observed that the sum is even. What is the probability that the sum is smaller
than or equal to 4? Similarly, we define the sets A = {(X1, X2) : X1 + X2 ≤ 4}.
B = {(X1, X2) : X1 +X2 is even}. Explicity, we have

B = {(X1, X2) : X1, X2 are both even} ∪ {(X1, X2) : X1, X2 are both odd}.
A ∩B = {(1, 1), (1, 3), (3, 1), (2, 2)}.

Therefore,

P (A|B) =
P (A ∩B)

P (B)
=

4/36

3/6× 3/6 + 3/6× 3/6
=

2

9
.

Example 4.2 (Model selection). There are two coins in an urn, one fair and one biased
with a probability of tail ρ = 0.3. Someone picks up one of the coins at random (with
half probability for picking up either coin) and tosses it n times and reports the outcomes:
D = (H,T,H,H, T,H,H,H, T,H). Conditional on D, what is the probability that the fair
coin was picked up?

We have two hypotheses (models): H1: The coin picked up was the fair one, H2: The
coin picked was the biased one. The prior probabilities for these models are the same:
P (H1) = P (H2) = 0.5. The likelihood of data, that is the conditional probability of the
outcomes is:

P (D|Hi) =

{
1/210, i = 1,

ρnT (1− ρ)nH , i = 2,

where nT and nH are the number of times the coin showed tail and head, respectively.
From Bayes’ rule, we have

P (H1|D) =
P (D, H1)

P (D)
=

P (H1)P (D|H1)

P (D|H1)P (H1) + P (D|H2)P (H2)

=
1/2× 1/210

1/2× 1/210 + 1/2× ρnT (1− ρ)nH

=
1/210

1/210 + ρnT (1− ρ)nH

and, of course, P (H2|D) = 1 − P (H1|D). Substituting ρ = 0.3 and nT = 3, we have
P (H1|D) = 0.3052 and P (H2|D) = 0.6948.
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Exercise 4.1. Consider the discrete random variables X ∈ {1, 2, 3} and Y ∈ {1, 2, 3, 4}
whose joint probabilities are given in the table below.

pX,Y (x, y) y = 1 y = 2 y = 3 y = 4 pX(x)
x = 1 1/40 3/40 4/40 2/40
x = 2 5/40 7/40 6/40 5/40
x = 3 1/40 2/40 2/40 2/40
pY (y)

• Find the marginal probabilities pX(x) and pY (y) for all x = 1, 2, 3, y = 1, 2, 3, 4 and
fill in the rest of the table.

• Find the conditional probabilities pX|Y (x|y) and pY |X(y|x) for all x = 1, 2, 3, y =
1, 2, 3, 4 and fill in the relevant empty tables.

pX|Y (x|y) y = 1 y = 2 y = 3 y = 4
x = 1
x = 2
x = 3

pY |X(y|x) y = 1 y = 2 y = 3 y = 4
x = 1
x = 2
x = 3

A.2 Posterior distribution

In classical statistics, θ is a fixed non-random variable and inference is largely based on de-
veloping confidence intervals or testing hypotheses for θ. The interpretation of probability
in classical statistics is the frequentist interpretation. This shows itself in the theoretical
guarantees of classical procedures: A test of significance α guarantees that if one conducts
the test independently certain many times (each with a different sample independent from
the others), he/she is expected to conduct a type-I error in 100α% of the time.

In contrast, in Bayesian statistics, θ is random variable, and inference is based on the
posterior distribution of θ conditional on the available data observed so far. The posterior
distribution of θ given the data X = x is expressed in terms of a probability mass function
or a probability distribution function as

p(θ|x) =

prior︷︸︸︷
p(θ)

likelihood︷ ︸︸ ︷
p(x|θ)
p(x)︸︷︷︸

evidence

=

joint distribution︷ ︸︸ ︷
p(θ, x)

p(x)
(4.2)

Here p(θ) is called the prior distribution of θ, which the probability distribution that
expresses our belief or information about the θ before we see the data x. The conditional
probability density p(x|θ) is called the likelihood and it bears the new information about
θ that is brought by the data x and p(x) is called the evidence.

The interpretation of probability in Bayesian statistics is called the Bayesian interpre-
tation, where probability quantifies the degree of belief about an event.
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Because of the fundamental philosophical difference between classical and Bayesian
statistics, the problems they deal with are usually different. However, sometimes they
do happen to have to answer similar statistical questions in practice. When the data is
ample, the conclusions drawn by classical and Bayesian statistics agree, they can differ
quite dramatically with little to moderate amount of data.

Example 4.3 (DNA test). The following example is very commonly used to illustrate the
effect of the prior distribution in Bayesian statistics. Suppose that the police find the body
of someone who was murdered. The murder weapon was found on the scene as well.

Some DNA evidence was found on the murder weapon. The police compare this DNA
to a list of 1000.000 people in their database. Those 1000.000 people in the database have
committed crimes previously, so there is a good chance, let us say 0.5 that the guilty person
is on the list. Therefore, a randomly selected person on the list has a probability of being
guilty with a probability of 1/2 × 1/1000.000 = 1/2000.000. This is the prior probability
of any person on the list being guilty of this specific crime or murder.

The DNA test has the following accuracy measures:

Match No Match

Compared DNAs belong to the same person 1 0
Compared DNAs do not belong to the same person 10−6 1− 10−6

Suppose now that the DNA of a person in the list is compared to the DNA found at the
crime scene, and the result is positive, that is, the DNA test resulted in a match. Based
on this evidence, can we determine that the person is guilty?

Here, the unknown parameter θ ∈ {0, 1} represents the true status of the suspect,
guilty (θ = 1) or innocent (θ = 0). The available data x = 1 is the DNA test result. Note
that this is the observed value of a random variable X, whose conditional distribution on
θ is specified in the table above. Namely, we have the conditional probabilities

p(x = 1|θ = 1) = 1, p(x = 0|θ = 1) = 0

p(x = 0|θ = 0) = 1− 10−6, p(x = 1|θ = 0) = 10−6.
(4.3)

Let us tackle this problem with a non-Bayesian approach first. This approach would
neglect any a priori belief about the person’s true status and base inference only on the
conditional distribution of X given θ. The problem can be formulated in the classical sense
as a hypothesis testing, with

H0 : θ = 0 (person is innocent), H1 : θ = 1 (person is guilty)

To perform the hypothesis testing, we need a decision rule based on the single outcome,
which is the DNA test result for the suspect. Let us consider the decision

Decision =

{
H1 for X = 1,

H0 for X = 0.
(4.4)
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What are the type I and type II errors of this test? If someone is guilty, there is no chance
of missing that, since the DNA test results in a 1 certainly. Therefore, the type II error
probability is 0. Type I probability also looks very good. If the suspect is innocent, we
convict the suspect with 10−6 probability. Therefore, α = 10−6.

Both type I and type II errors suggest that the decision rule in (4.4) is quite reliable.
Yet, should we really convict the suspect based on the positive outcome? The Bayesian
approach to the same problem provides a different perspective. This time we do take
into account the prior belief about the suspect’s true status. The prior probability of the
suspect being guilty is 1/2000000 since the database contains 1000000 people and it is
believed that the guilty person is on the list with a probability of 1/2. Therefore, the prior
probabilities are

p(θ = 1) = 1− p(θ = 0) = 5× 10−7. (4.5)

Applying the Bayes’ rule in (4.2) with the prior in (4.5) and likelihood in (4.3), we get

p(θ = 1|x = 1) =
p(θ = 1)p(x = 1|θ = 1)

p(x = 1)

=
p(θ = 1)p(x = 1|θ = 1)

p(x = 1|θ = 1)p(θ = 1) + p(x = 1|θ = 0)p(θ = 0)

=
(1/2000000)× 1

(1/2000000)× 1 + (1999999/2000000)× 10−6

≈ 0.33.

While the likelihood p(x = 1|θ) favours θ = 1 over θ = 0 by far, the suspect is guilty with
a posterior probability less than 1/2, leave aside being beyond reasonable doubt.

The conviction of the suspect according to the decision rule is referred to as the con-
victor’s fallacy, since the conditional distribution p(θ|x) is mixed up with the likelihood
p(x|θ).

What happened here? The reason for the dramatical difference between p(θ|x) and
p(x|θ) is the prior p(θ) favouring θ = 0 strongly. For example, if, by some preliminary
study conducted with other sorts of evidence, the number of suspects was reduced to a
dozen of people, say m, then the prior probability of a suspect being guilty would be 1/m,
a larger number than 1/2000000.

Exercise 4.2. Suppose this time that two DNA tests, instead of one, are conducted to
compare the suspect’s DNA with the DNA found at the crime scene. Let the outcomes
of those tests be X1 and X2 and assume that X1 and X2 are independent. Answer the
following questions:

• What is the posterior probability of the suspect being guilty given that X1 = 1 and
X2 = 0?

• What is the posterior probability of the suspect being guilty given that X1 = 1 and
X2 = 1?
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Exercise 4.3. Suppose there are k normal populations, with population distributions
N (µ1, σ

2
1), . . . ,N (µk, σ

2
k). A random sample X of size 1 is drawn from one of those popu-

lations chosen randomly according to the probabilities w1, . . . , wk with w1 + . . .+ wk = 1.
Let J ∈ {1, . . . , k} be the population number from which X is drawn.

• Express the joint probability distribution of J and X by writing down p(j, x).

• Write down the marginal probability density function p(x) of the marginal distribu-
tion of X and show that it is a mixture of normal densities.

• Suppose that X = x is observed. Write down the posterior distribution of J given
X = x. That is, derive the expression for the conditional probability that X = x is
drawn from the i’th population for each i = 1, . . . , k.

Notation: Notice that we used the same letter p to denote four different probability
distributions in (4.2). A more rigorous treatment would be to differentiate the distributions
with subscripts, such as

pΘ|X(θ|x) =
pΘ(θ)pX|Θ(x|θ)

pX(x)
.

However, it is common practice to drop the cumbersome subscripts and use p(x, y), p(x),
p(x|y), etc. as in in (4.2) whenever it is clear from the context what distribution we mean.
We will also adopt that approach in this chapter.

It is also common to use densities as well as distributions to indicate the distribution
of a random variable. For example, all the expressions below mean the same thing: X is
distributed from the distribution F , whose pdf or pmf is p(x)

X ∼ F , X ∼ p(·), X ∼ p(x), x ∼ F , x ∼ p(·), x ∼ p(x).

In the rest of this document, we will use the aforementioned notations interchangeably,
choosing the most suitable one depending on the context.

A.3 Prior selection

Consider the variables X, Y and Bayes’ theorem for p(x|y) in words,

posterior ∝ prior× likelihood.

In Bayesian statistics, the usual first step to building a statistical model is to decide on the
likelihood, i.e. the conditional distribution of the data given the unknown parameter. The
likelihood represents the model choice for the data and it should reflect the real stochastic
dynamics/phenomena of the data generation process as accurately as possible.

Bayesian inference for the unknown parameter requires assigning a prior distribution
to it. Choosing a prior is the subject of a huge debate in the field of Bayesian statistics.
There are several methods to choose a prior, among which one may be preferred over the
other depending on the situation.
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A.3.1 Informative priors

An informative prior may be used when there exists specific, definite information about θ.
This is the case when there is expert knowledge about θ. Informative priors also appear
when data accumulate in time. A posterior distribution obtained from pre-existing data
can be set as the prior distribution for the new data to come. That is why the terms
“prior” and “posterior” are generally relative to a specific piece of data.

If data are collected systematically, the mechanism of using the current posterior as
the prior for the future evidence is natural. Suppose X1, X2, . . . are a sequence of random
observations that are independent given the parameter θ. Therefore the likelihood function
for any X1 = x1, . . . , Xn = xn is given by

p(x1:n|θ) =
n∏
i=1

p(xi|θ).

When the data are collected sequentially as x1, x2, . . ., a respective sequential update is
available. Observe that

p(θ|x1:n) =
p(θ)p(x1:n|θ)
p(x1:n)

=
p(θ)p(x1:n−1|θ)
p(x1:n−1)

p(xn|x1:n−1, θ)

p(xn|x1:n−1)

= p(θ|x1:n−1)︸ ︷︷ ︸
new prior

likelihood (specific to xn)︷ ︸︸ ︷
p(xn|θ)

p(xn|x1:n−1)︸ ︷︷ ︸
conditional evidence

Therefore, p(θ|x1:n−1) can be considered as the prior for the new observation xn.
In fact, an analogy can be drawn between expert knowledge and p(θ|x1:n−1). Assum-

ing the expert is a Bayesian, the expertise he/she gained from the past is expressed as
p(θ|x1:n−1).

Sequential updates of the posterior as above has contributed greatly to the popularity
of Bayesian statistics for sequential data. Note that in the previous discussion we have
confined to independent observations; however there are similar sequential updates for
more complex models. In its most generality, i.e., without the conditional independence
assumption, we have the following sequential update

p(θ|x1:n) = p(θ|x1:n−1)︸ ︷︷ ︸
new prior

conditional likelihood (given xn)︷ ︸︸ ︷
p(xn|x1:n−1, θ)

p(xn|x1:n−1)︸ ︷︷ ︸
conditional evidence
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Note that, differently from the update under the conditional independence assumption,
p(xn|θ) is replaced by p(xn|x1:n−1, θ) (which, of course reduces to the former under condi-
tional independence).

A.3.2 Weakly informative priors

Weakly informative priors are used when there is not a strong opinion about θ. Such priors
express partial knowledge about θ. A prior distribution with high variance, or one that
very loosely constraints θ to a wide range, can be named a weakly uninformative prior.
For example, if θ is the temperature tomorrow, a normal distribution N(20, 302), or a
Uniform distribution Unif(−10, 40) could be a weakly informative prior. The distribution
Unif(−10, 40) expresses that the temperature tomorrow is not expected below −10 and
above 40 degrees. A similar interpretation goes for N(20, 302) as well. Gamma and inverse
gamma distributions can also be used for weakly informative priors for parameters with a
positive range, such as the variance parameter.

A.3.3 Uninformative priors

An uninformative prior expresses the objective information about a parameter, information
that everyone has and can agree on. A prior like that can be read as “θ is a positive
number”, or “θ is between 0 and 1”. When θ is discrete, one uninformative prior can be
set by assigning equal probability to each value θ can take. For continuous and bounded
θ, the continuous uniform distribution is a choice.

However, in general, how to choose an objective prior is a debated subject. There are
many priors proposed to be used as an uninformative prior. Those selections aim to ensure
some kind of objectivity.

As one issue (among many), think about θ ∼ Unif(a, b). If uniformness is a measure
for objectivity, θ ∼ Unif(a, b) is surely an uninformative prior for θ. However, this prior
leads to a non-uniform distribution for ϕ = log θ. Therefore, the objectivity is lost after
transforming θ. As a remedy for that, the Jefferys prior is proposed. Jeffery’s prior is
defined to be proportional to the square of the determinant of the Fisher information
matrix with respect to the likelihood. The Jefferys prior can be shown to be invariant
under transformations of θ. But the Jefferys prior comes with its own problems, such as
violating the likelihood principle.

Another approach is reference priors, which aims to maximize the effect of the likelihood
in the posterior distribution, i.e., to minimize the effect of the prior. But it may be hard
to derive that choice analytically.

Note that uninformative priors are to be used in the lack of expert knowledge or past
data, that is when we do not know anything about the parameter (except objective things
such as its natural range). When we do have a data/experience-driven knowledge, it is
more appropriate to reflect it in your prior choice.
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A.3.4 Improper priors

In the effort of designing an uninformative prior, one may choose a flat prior, such as
p(θ) ∝ 1. When θ takes values on an infinite range, however, choosing p(θ) ∝ 1 is improper.
This is because p(θ) cannot be normalised and therefore it cannot be a distribution. A
prior such as that is called an improper prior. To give a general definition, a specification
of the prior as

p(θ) ∝ η(θ)

is called an improper prior if
∫

Θ
η(θ)dθ =∞. Examples are

• The uniform distribution on an infinite interval (i.e., R+ or R).

• Beta(0, 0), the beta distribution for α = 0, β = 0 (uniform distribution on log-odds
scale).

• The logarithmic prior on the positive reals, p(θ) ∝ 1/θ (i.e., flat prior for log θ).

Although improper, such choices are popularly used. The reason for such choices is to start
with prior that has zero or minimal effect on the posterior distribution. The justification
for using an improper prior is that the prior need not be a proper distribution to have a
proper posterior distribution. Observe that, if p(θ) ∝ η(θ),

p(θ|x) =
η(θ)p(x|θ)∫

Θ
η(θ)p(x|θ)dθ

The above expression is a proper distribution if
∫

Θ
η(θ)p(x|θ)dθ < ∞. One should be

cautious in using improper priors, though. The likelihood function p(x|θ) is not required
to be integrable over θ, so one must ensure that

∫
Θ
η(θ)p(x|θ)dθ <∞.

A.3.5 Conjugate priors

For convenience, it is common to choose a family of parametric distributions for the data
likelihood. With such choices, θ in p(x|θ) becomes (some or all of the) parameters of the
chosen distribution. For example, θ = (µ, σ2) may be the unknown parameters of a normal
distribution from which the data X1, . . . , Xn are assumed to be distributed, i.e.

p(x1:n|θ) =
n∏
i=1

φ(xi;µ, σ
2)

where φ(·;µ, σ2) stands for the pdf of the normal distribution N (µ, σ2). As another
example, let θ = (α, β) be the shape and scale parameters of the gamma distribution
Gamma(α, β) and

p(x1:n|θ) =
n∏
i=1

e−βxixα−1
i βα

Γ(α)
.
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Given the family of distributions for the likelihood, it is sometimes useful to consider a
certain family of distributions for the prior distribution so that the posterior distribution
has the same form as the prior distribution but with different parameters, i.e. the posterior
distribution is in the same family of distributions as the prior. When this is the case,
the prior and posterior are then called conjugate distributions, and the prior is called a
conjugate prior for the likelihood p(x|θ).
Example 4.4 (Success probability of the Binomial distribution). A certain coin has
P (T) = θ where θ is unknown. The prior distribution is θ ∼ Beta(a, b). The coin is tossed
n times, so that if the number of times it brought a tail is X, the conditional distribution
for X is X|θ ∼ Binom(n, θ). We want to find the posterior distribution of θ given X = x
successes out of n trials.

The posterior density is proportional to

p(θ|x) ∝ p(θ)p(x|θ) =
θa−1(1− θ)b−1

B(a, b)

n!

x!(n− x)!
θx(1− θ)n−x (4.6)

where B(a, b) =
∫
ua−1(1− u)b−1du.

Before continuing with deriving the expression, first note the important remark that
our aim here is to recognise the form of the density of a parametric distribution for θ in
(4.6). Therefore, we can get rid of any multiplicative term that does not depend on θ.
That is why we could start with the joint density as p(θ|x) ∝ p(θ, x). In that way get

p(θ|x) ∝ θa+x−1(1− θ)b+n−x−1

Since we observe that this has the form of a Beta distribution, we can conclude that the
posterior distribution has to be a beta distribution

θ|X = x ∼ Beta(apost, bpost)

where, from similarity with the prior distribution, we conclude that apost = a + x and
bpost = b+ n− x.

Example 4.5 (Mean parameter of the normal distribution). It is believed that X1:n =
x1:n are samples from a normal distribution with unknown µ and known variance σ2. We
want to estimate µ from x1:n. The prior for θ = µ is chosen as N (0, κ2

0), the conjugate
prior of the normal likelihood for the mean parameter. The joint density can be written
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as

p(µ|x) ∝ p(µ, x) = p(µ)p(x|µ)

=
1√

2πκ2
0

exp

{
− 1

2κ2
0

µ2

} n∏
i=1

1√
2πσ2

exp

{
− 1

2σ2
(xi − µ)2

}

∝ exp

{
− 1

2κ2
0

µ2 − 1

2σ2

n∑
i=1

(xi − µ)2

}

= exp

{
− 1

2κ2
0

µ2 − 1

2σ2

(
n∑
i=1

x2
i + nµ2 − 2µ

n∑
i=1

xi

)}

∝ exp

{
− 1

2κ2
0

µ2 − 1

2σ2

(
nµ2 − 2µ

n∑
i=1

xi

)}

∝ exp

{
−1

2

[
µ2

(
1

κ2
0

+
n

σ2

)
− 2µ

1

σ2

n∑
i=1

xi

]}
Since we observe that this has the form of a normal distribution, we can conclude that the
posterior distribution has to be normal

µ|X1:n = x1:n ∼ N (mpost, κ
2
post)

for some mpost and κ2
post. In order to find mpost and σ2

post, compare the expression above

with φ(µ;m,κ2) ∝ exp
{
−1

2

[
µ2 1

κ2
− 2µm

κ2
+ m2

κ2

]}
. Therefore, we must have

κ2
post =

(
1

κ2
0

+
n

σ2

)−1

,
mpost

κ2
post

=
1

σ2

n∑
i=1

xi ⇒ mpost =

(
1

κ2
0

+
n

σ2

)−1
1

σ2

n∑
i=1

xi

Example 4.6 (Variance of the normal distribution). Consider the scenario in the
previous example above but this time µ is known and the variance σ2 is unknown. The
prior for θ = σ2 is chosen as the conjugate prior of the normal likelihood for the variance
parameter, i.e. the inverse gamma distribution IG(α, β) with shape and scale parameters
α and β, having the probability density function

p(σ2) =
βα

Γ(α)
σ−2(α+1) exp

(
− β

σ2

)
.

The joint density can be written as

p(σ2|x) ∝ p(σ2, x) = p(σ2)p(x|σ2)

=
βα

Γ(α)
σ−2(α+1) exp

(
− β

σ2

) n∏
i=1

1√
2πσ2

exp

{
− 1

2σ2
(xi − µ)2

}
∝ σ−2(α+n/2+1) exp

{
−

1
2

∑n
i=1(xi − µ)2 + β

σ2

}
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Comparing this expression to the prior density p(σ2), we observe that they have the same
form and therefore,

σ2|X1:n = x1:n ∼ IG(αpost, βpost)

for some αpost and βpost. From similarity, we can conclude

αpost = α +
n

2
, βpost = β +

1

2

n∑
i=1

(xi − µ)2.

Example 4.7 (Multivariate normal distribution). Let the likelihood for X given µ is
chosen as X|µ ∼ N (Aµ,R) and the prior for the unknown µ is chosen µ ∼ N (m,S). The
posterior p(µ|x) is

p(µ|x) ∝ p(µ, x) =p(µ)p(x|µ)

=|2πS|−1/2 exp
{
−0.5(µ−m)TS−1(µ−m)

}
|2πR|−1/2 exp

{
−0.5(x− Aµ)TR−1(x− Aµ)

}
∝ exp

{
−0.5(µTS−1µ− 2mTS−1µ+ µTATR−1Aµ− 2xTR−1Aµ)

}
= exp

{
−0.5

[
µT (S−1 + ATR−1A)µ− 2(mTS−1 + xTR−1A)µ

]}
∝φ(µ;mpost, Spost) ∝ exp

{
−0.5

[
µTS−1

postµ− 2mT
postS

−1
postµ

]}
where the posterior covariance is

Spost = (S−1 + ATR−1A)−1 (4.7)

and the posterior mean is

mpost = Spost(m
TS−1 + xTR−1A)T = Spost(S

−1m+ ATR−1x). (4.8)

Exercise 4.4. Show the following conjugacy relations.

(a) Show that the gamma distribution is the conjugate prior of the exponential distri-
bution, i.e. if θ ∼ Gamma(α, β) and X|θ ∼ Exp(θ) (with mean E(X|θ) = 1/θ), then
θ|X = x ∼ Gamma(αpost, βpost) for some αpost and βpost. Find αpost and βpost in
terms of α, β, and x.

(b) Show that Dirichlet distribution is the conjugate prior of the multinomial distri-
bution: Let θ = (θ1, . . . , θk) be a k-dimensional vector of probabilities such that
θ1 + . . . + θk = 1 and X = (X1, . . . , Xk)|θ ∼ Multinomial(θ1, . . . , θk). That is,
show that, if the prior distribution is taken as θ ∼ Dirichlet(ρ1, . . . , ρk) for some
ρ1 > 0, . . . , ρk > 0, then the posterior distribution of θ can be expressed as θ|X =
x ∼ Dirichlet(ρpost,1, . . . , ρpost,k). Find ρpost,1, . . . , ρpost,k. [The pdf of (θ1, . . . , θk) ∼
Dirichlet(ρ1, . . . , ρk) is given by

p(θ1, . . . , θk) =
Γ
(∑k

i=1 ρi

)
∏k

i=1 Γ(ρi)

k∏
i=1

θρi−1
i .

with the support {θ1 + . . .+ θk = 1}.]
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Computing the evidence: We saw that when conjugate priors are used for the prior,
then p(θ) and p(θ|x) belong to the same family, i.e. their pdf/pmf have the same form.
This is nice: since we know p(θ), p(x|θ), and p(θ|x) exactly, we can compute the evidence
p(x) for a given x as

p(x) =
p(θ, x)

p(θ|x)
=
p(θ)p(x|θ)
p(θ|x)

Example 4.8 (Success probability of the Binomial distribution - ctd). Consider the
setting in Example 4.4. Since we know p(θ|x) and p(θ, x) exactly, the evidence p(x) can
be found as

p(x) =

θα−1(1−θ)β−1

B(α,β)
n!

x!(n−x)!
θx(1− θ)n−x

θα+x−1(1−θ)β+n−x−1

B(α+x,β+n−x)

(4.9)

=
n!

x!(n− x)!

B(α + x, β + n− x)

B(α, β)
. (4.10)

which is the pmf, evaluated at x, of the Beta-Binomial distribution with trial parameter
n and shape parameters α and β.

B Quantities of interest in Bayesian inference

In Bayesian statistics, the ultimate goal is the posterior distribution p(θ|x) of the unknown
variable given the available data X = x. There are several quantities one might be inter-
ested in; all of these quantities are rooted in p(θ|x). The following are some examples of
such quantities.1

B.1 Posterior mean and median

If we want to have a point estimate about θ based on the posterior distribution p(θ|x), one
quantity we can look at is the mean posterior

E(θ|X = x) =

∫
p(θ|x)θdθ

Other than being an intuitive choice, E(θ|X), as a random function of X, is justified in the
frequentist setting as well, because E(θ|X) minimises the expected mean-squared error

MSE = E
(

[θ − θ̂(X)]2
)

=

∫
(θ − θ̂(x))2p(θ, x)dθdx

where θ̂(X) is the estimator for θ and the expectation is taken with respect to the joint
distribution of θ,X.

1It will be assumed that the random variables involved in the discussion have pdf, so integrals will be
used for some definitions. Note that the discussion can be extended to discrete variables as well, by simply
replacing integrals with summations.
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Theorem 4.1. θ̂(X) = E(θ|X) minimises MSE.

In general, if we want to estimate a function ϕ(θ) of θ given X = x, we can target the
posterior mean of ϕ

E(ϕ(θ)|X = x) =

∫
p(θ|x)ϕ(θ)dθ,

which minimises the expected mean-squared error for ϕ(θ)

E
(
[ϕ(θ)− ϕ̂(X)]2

)
=

∫
(ϕ(θ)− ϕ̂(x))2p(θ, x)dθdx.

Exercise 4.5. Prove Theorem 4.1 [Hint: write the estimator as θ̂(X) = E(θ|X)+(θ̂(X)−
E(θ|X)) and consider conditional expectation of the MSE given X = x first. You should
conclude that for any x, θ̂(x)− E(θ|X = x) should be zero.]

Although it has nice statistical properties as mentioned above, the posterior mean may
not always be a good choice. For example, suppose the posterior is a mixture of normal
distributions with pdf p(θ|x) = 0.8φ(θ;−10, 1) + 0.2φ(θ; 40, 1). The posterior mean is 0
but density of p(θ|x) at 0 is almost 0 and the distribution has almost no mass around 0!

An alternative to the posterior mean can be the posterior median. The median for any
probability distribution P is defined as any point c (which may not be unique) such that

P (θ ≤ c) ≥ 1/2, and P (θ ≥ c) ≥ 1/2.

While the posterior mean minimizes MSE, the posterior median minimizes the mean ab-
solute error (MAE). For a given estimator θ̂(X), MAE is defined as

MAE = E
(∣∣∣θ − θ̂(X)

∣∣∣) =

∫ ∣∣∣θ − θ̂(x)
∣∣∣ p(θ, x)dθdx.

B.2 Maximum a posteriori estimation

Another point estimate that is derived from the posterior is the maximum a posteriori
(MAP) estimate which is the maximising argument of p(θ|x)

θ̂MAP = arg max
θ∈Θ

p(θ|x) = arg max
θ∈Θ

p(θ, x).

Note that this procedure is different from maximum likelihood estimation (MLE), which
yields the maximising argument of the likelihood

θ̂MLE = arg max
θ∈Θ

p(x|θ),

since, in the MAP estimation, there is the additional factor due to prior p(θ).



CHAPTER 4. BAYESIAN INFERENCE 104

B.3 Posterior predictive distribution

Assume we are interested in the distribution that a new data point Xn+1 would have, given
a set of n existing observations X1:n = x1:n. In a frequentist context, this might be derived
by computing the maximum likelihood estimate θ̂MLE (or some other point estimate) of θ
given x1:n, and then plugging it into the distribution function of the new observation Xn+1

so that the predictive distribution is p(xn+1|θ̂MLE).
In a Bayesian context, the natural answer to this is the posterior predictive distribu-

tion, which is the distribution of unobserved observations (prediction) conditional on the
observed data p(xn+1|x1:n). To find the posterior predictive distribution, we make use
of the entire posterior distribution of the parameter(s) given the observed data to yield
a probability distribution rather than simply a point estimate. Specifically, we compute
p(xn+1|x1:n) by marginalising over the unknown variable θ, using its posterior distribution:

p(xn+1|x1:n) =

∫
p(xn+1, θ|x1:n)dθ

=

∫
p(xn+1|θ, x1:n)p(θ|x1:n)dθ

In many cases, Xn+1 is independent from X1:n given θ. This happens, for example,
when {Xi}i≥1 are i.i.d. given θ, that is Xi|θ ∼ p(x|θ), i ≥ 1. In that case, the density
above reduces to

p(xn+1|x1:n) =

∫
p(xn+1|θ)p(θ|x1:n)dθ

Note that this is equivalent to the expected value of the distribution of the new data point
when the expectation is taken over the posterior distribution of θ, i.e.:

p(xn+1|x1:n) = Eθ|x1:n [p(xn+1|θ)|X1:n = x1:n].

Conjugate priors and posterior predictive density: We saw that when conjugate
priors are used for the prior, then p(θ) and p(θ|x) belong to the same family, i.e. their
pdf/pmf have the same form. This implies that, when Xi’s are i.i.d. conditional on θ, the
posterior predictive density p(xn+1|x1:n) has the same form as the marginal density of a
single sample

p(x) =

∫
p(θ)p(x|θ)dθ.

Example 4.9 (Success probability of the Binomial distribution - ctd). Consider the
setting in Example 4.4. Given the prior θ ∼ Beta(α, β) and X = x successes out of n
trials, what is the probability of having Z = z successes out of the next m trials?

Here Z is the next sample that is to be predicted. We can employ the posterior
predictive probability for Z. We know from the derivation of Example 4.8 that Z will be
distributed from the Beta-Binomial distribution with parameters m (trials), α′ = α + x
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and β′ = β+n−x since the prior and the posterior of θ are in the same form and Z given
θ and X given θ are both Binomial.

pZ|X(z|x) =
m!

z!(m− z)!

B(α′ + z, β′ +m− z)

B(α′, β′)
.

Exercise 4.6. Suppose we observe a noisy sinusoid with period T and unknown amplitude
θ for n steps: X|θ ∼ N (xt; f(θ, t), σ2

x), for t = 1, . . . , n where f(t; θ) = θ sin(2πt/T ) is the
sinusoid. The prior for the amplitude is Gaussian: θ ∼ N (0, σ2

θ).

1. Find p(θ|x1:n) and p(x1:n).

2. What is distribution of f(n+ 1, θ) given X1:n = x1:n?

3. Find p(xn+1) and p(xn+1|x1:n). Compare their variances. What can you comment on
the difference between the variances?

4. Data given in sinusoid.txt are generated with period T = 40, σ2
x = 1.

(a) Calculate the parameters of p(θ|x1:n)

(b) Plot p(xn+1) and p(xn+1|x1:n) on the same axis. Take σ2
θ = 100 as the prior

parameter.

B.4 Credible Intervals

In Bayesian statistics, 100(1−α)% credible interval is an interval within which an unknown
random variable falls with probability 1− α. A credible interval for the parameter θ is an
interval in the domain of a posterior probability distribution p(θ|x). Given X = x, the
interval (L(x), U(x)) is a 100(1− α)% credible interval if it satisfies

P (L(x) < θ < U(x)|X = x) =

∫ U(x)

L(x)

p(θ|x)dθ = 1− α. (4.11)

Note that, to be most general, ‘interval’ is a loose term, since a suitable ‘credible
interval’ may also be a union of intervals, especially for a multimodal posterior distribution.

Exercise 4.7. Consider the problem in Example 4.5, where we have n observations from a
normal population with known variance σ2 and unknown mean µ with a prior µ ∼ N (0, κ2

0).
Find a 95% credible interval for µ.

B.4.1 Credible intervals and confidence intervals

There is a notable analogy between credible intervals in Bayesian statistics and confidence
intervals in frequentist statistics. Both provide an interval for the unknown parameter.
However, they differ on a philosophical basis.
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For a credible interval, the data, hence the confidence interval itself is considered fixed
but θ is random. In other words, the probabilistic statement in (4.11) involves the dis-
tribution of θ given x. A 95% credible interval means that conditional the specific data
X = x, θ is in the credible interval with 0.95 probability.

In contrast, in frequentist statistics, parameter θ is treated as a fixed value and the
bounds of the confidence intervals are treated as random. The probabilistic statement
that θ is in a confidence interval with probability 1− α is with respect to the population
distribution, i.e., the distribution of X. A frequentist 95% confidence interval means
that with a large number of repeated samples, around 95% of such calculated confidence
intervals would include the true value of θ.

A second major difference is that a credible interval involves a prior distribution whereas
a confidence interval does not. For that reason, Bayesian credible intervals can be quite
different from frequentist confidence intervals.

B.4.2 Choosing a credible interval

Just like confidence intervals, credible intervals are not unique on a posterior distribution.
There are several approaches for defining a suitable credible interval. We will list the most
popular three of them.

• One way is to choose the narrowest possible interval. For a unimodal distribution,
this corresponds to the highest posterior density interval, that is, the interval with the
highest probability density. Such an interval can be formulated as (L(x), U(x)) such
that for any θ ∈ (L(x), U(x)) and θ′ /∈ (L(x), U(x)), we have p(θ′|x) ≤ p(θ|x). For a
unimodal distribution, this interval includes the mode of the posterior distribution,
that is, the maximum a posteriori estimate for θ.

• Another way is to choose the credible interval such that the probability of being
below the interval is as likely as being above it. If (L(x), U(x)) is a 100(1 − α)%
credible interval constructed in this way, it satisfies

P (θ ≤ L(x)|X = x) = P (θ ≥ U(x)|X = x) = α/2.

This interval will include the median. This is sometimes called the equal-tailed
interval.

• Assuming that the mean exists, we can choose the interval for which the mean is the
central point.

The generalisation of a credible interval to multivariate random variables is the credible
region. More concretely, R ⊆ Θ is a 100(1− α)% confidence region if it satisfies

P (θ ∈ R|X = x) =

∫
R

p(θ|x)dθ = 1− α.
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Exercise 4.8. Consider the problem in Example 4.7, where X|µ ∼ N (Aµ,R) with known
R and unknown µ with prior µ ∼ N (m,S). The posterior distribution of µ given X = x
was shown to be N (µpost, Spost), with the moments given in (4.8) and (4.7). Show that the
region {

µ : (µ− µpost)
TS−1

post(µ− µpost) ≤ χ2
α,d

}
is a 100(1− α)% credible region for µ, where d is the dimension of µ.

It is also possible to talk about credible intervals regarding the posterior predictive
distribution as well. Let, X = x be given and X0 is a future observation that is to be
predicted. The conditional distribution of X0 given X = x is constructed through the
posterior distribution as

p(x0|x) =

∫
θ∈Θ

p(θ|x)p(x0|θ, x)dθ.

A credible interval for X0 is an interval in the domain of p(x0|x). Given X = x, a
100(1− α)% credible interval for X0 is any (L(x), U(x)) that satisfies

P (L(x) < X0 < U(x)|X = x) =

∫ U(x)

L(x)

p(x0|x)dx0 = 1− α.

C Sampling from posterior distributions

A closed-form for the posterior distribution can be obtained if the joint density p(θ)p(x|θ)
is proportional to the density of a known distribution. It might have already occurred to
you that this may not always be the case, especially when θ is multidimensional or the
prior distribution is chosen as something other than a conjugate prior.

Posterior distributions that cannot be expressed in a closed-form are called intractable,
in a certain sense of the word. Intractable posterior distributions are often encountered in
Bayesian statistics.

Example 4.10. Assume we have X1:n ∼ N (µ, σ2). In the examples we covered previously
regarding the normal distribution, either µ or σ2 were known, and we were able to come
up with closed form posterior distributions for the other parameter, thanks to a conjugate
prior. When both µ and σ2 are unknown, we no more have a closed form expression for
their joint posterior distribution p(µ, σ2|x1:n).

Example 4.11. This is a simple example that illustrates the source localisation problem.
We have a source (or target) on the 2-D plane whose unknown location

θ = (θ1, θ2) ∈ R2

we wish to find. We collect distance measurements for the source using three sensors, lo-
cated at positions s1, s2, and s3, see Figure 4.1. The measured distances X = (X1, X2, X3),
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Figure 4.1: Source localisation problem with three sensors and one source

however, are noisy with independent normally distributed noises with equal variance:2

Xi|θ ∼ N (||θ − si||, σ2
x), i = 1, 2, 3,

where || · || denotes the Euclidean distance. Letting ri = ||θ− si||, the likelihood evaluated
at x = (x1, x2, x3) given θ can be written as

p(x|θ) =
3∏
i=1

φ(xi; ri, σ
2
x) (4.12)

We do not know much a priori information about θ, therefore we take the prior distribution
θ as the bivariate normal distribution with zero mean vector and a large diagonal covariance
matrix, θ ∼ N (02, σ

2
θI2), so that the density is

p(θ) = φ(θ1; 0, σ2
θ)φ(θ2; 0, σ2

θ). (4.13)

See Figure 4.2 for an illustration of prior, likelihood, and posterior densities for this prob-
lem.

Given noisy measurements, X = x = (x1, x2, x3), we want to locate θ, so we are
interested in the posterior distribution

p(θ|x) ∝ p(θ)p(x|θ).

Due to the non-linearities in the likelihood, this posterior distribution is intractable.

2In this way we allow negative distances, which makes the normal distribution not the most proper
choice. However, for the sake of ease with computations, we overlook that in this example.
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Figure 4.2: Source localisation problem with three sensors and one source: The likelihood
terms, prior, and the posterior. The parameters and the variables are s1 = (0, 2), s2 =
(−2,−1), s3 = (1,−2), x1 = 2, x2 = 1.6, x3 = 2.5, σ2

θ = 100, and σ2
x = 1

Example 4.12 (Logistic regression model). In the previous chapter, we studied the linear
regression model in detail. Here, we introduce the logistic regression model, a very popular
regression model with binary responses, where the regression function is non-linear in
its parameters. As before, we have n independent response variables Yi, i = 1, . . . , n,
and for each response variable we have k predictors, xi1, . . . , xik. Differently than the
linear regression model, response variable Yi is a binary (Bernoulli) variable with a success
probability pi. The logistic regression model assumes a linear relationship between the
predictor variables and the log-odds log(pi/(1 − pi)) of the event Yi = 1. This linear
relationship can be written in the following mathematical form:

log
pi

1− pi
= β0 + β1xi,1 + . . .+ βkxi,k

We can rewrite this relation by emphasising on the conditional probability of the response
variable as

pi = P (Yi = 1|xi,1, . . . , xi,k, β) =
exp(β0 + β1xi,1 + . . .+ βkxi,k)

1 + exp(β0 + β1xi,1 + . . .+ βkxi,k)

=
1

1 + exp{−(β0 + β1xi,1 + . . .+ βdxi,d)}
.
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The problem of estimating β given a Y1:n = y1:n and X = x1:n,1:k can be formulated in
terms of a posterior distribution once we have a prior distribution for β.

p(β|X, y) ∝ p(β)︸︷︷︸
prior

n∏
i=1

P (Yi = yi|xi,1, . . . , xi,k, β)︸ ︷︷ ︸
likelihood

This posterior distribution does not have a closed-form expression for any reasonable choice
for the prior distribution.

The desire to identify the posterior distribution in such difficult cases has led to the
development of several methods, many of which can be gathered under the family of
Monte Carlo methods. While Monte Carlo methods can be used to draw samples from
any complex distribution in general; they are most exploited for Bayesian statistics. The
idea is to generate samples from the posterior distribution

θ(1), . . . , θ(N) ∼ p(θ|x) (4.14)

and use those samples to have an idea about p(θ|x) (for example, by making a histogram
out of those samples), or estimate the expectation of a function ϕ(θ) of interest with respect
to the posterior distribution

E(ϕ(θ)|X = x) =

∫
θ∈Θ

p(θ|x)ϕ(θ)dθ.

When the samples in (4.14) are provided by some Monte Carlo method, the approximation
to the posterior expectation above is

E(ϕ(θ)|X = x) ≈ 1

N

N∑
i=1

ϕ(θ(i)).

The variance of the approximation above decreases with N , hence the more samples the
better. The main challenge here is the sampling step: How do we generate samples from
p(θ|x) even when it is not in a closed-form? This question is central to Monte Carlo.

In the following, we will make a short review of Monte Carlo methods. We start with
an exact sampling method named rejection sampling. We will next discuss the importance
sampling method for estimation of posterior expectations with weighted samples. Finally,
a larger emphasis will be put on Markov chain Monte Carlo (MCMC) methods, which are
the most popular methods among the ones we will have covered.

Remark 4.1 (Change of notation). For brevity in the notation, we will denote the
distribution we want to sample from by π(θ). When Bayesian inference is concerned,
π(θ) = p(θ|x). Recall that such shorthand notation is suitable since in Bayesian statistics
x is fixed.
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C.1 Rejection sampling

The method of rejection sampling is used to generate exact i.i.d. samples from the desired
distribution, which in our case is p(θ|x). There are already several methods for i.i.d.
sampling. Those methods only rely solely on being able to sample from the uniform
distribution Unif(0, 1). Some of those methods are the method of inversion, transformation,
and composition; for the interested reader, a brief introduction to those methods is provided
in Appendix C. Those methods, however, are typically suitable for well-known distributions
that have closed-form expressions. The reason we are particularly interested in rejection
sampling is that it is suitable for distributions that are not in a closed form, as we typically
encounter in Bayesian statistics as π(θ) = p(θ|x) ∝ p(θ)p(x|θ).

Rejection sampling is available when there exists an instrumental distribution with
density q(θ) such that

• q(θ) > 0 whenever π(θ) > 0, and

• There exists M > 0 such that π(θ) ≤Mq(θ) for all θ ∈ Θ.

The rejection sampling method for obtaining one sample from π can be implemented with
any q(θ) and M > 0 that satisfy the conditions above as in Algorithm 4.1.

Algorithm 4.1: Rejection sampling

1 Generate θ′ ∼ q(θ′) and U ∼ Unif(0, 1).

2 If U ≤ π(θ′)
Mq(θ′)

, accept θ = θ′; else go to 1.

How quickly do we obtain a sample with this method? Noting that the pdf of θ′ is
q(θ′), the acceptance probability can be derived as

P (Accept) =

∫
P (Accept|θ)q(θ)dθ

=

∫
π(θ)

Mq(θ)
q(θ)dθ

=
1

M

∫
π(θ)dθ

=
1

M
, (4.15)

which is also the long term proportion of the number accepted samples over the number
of trials. Therefore, taking q(θ) as close to π(θ) as possible to avoid large π(θ)/q(θ) ratios
and taking M = supθ π(θ)/q(θ) are sensible choices to make the acceptance probability
P (Accept) as high as possible.

The validity of the rejection sampling method can be verified by considering the dis-
tribution of the accepted samples. Using Bayes’ theorem,

p(θ|Accept) =
q(θ)P (Accept|θ)
P (Accept)

=
q(θ) 1

M
π(θ)
q(θ)

1/M
= π(θ). (4.16)
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C.1.1 When π(θ) is known up to a normalising constant

One advantage of rejection sampling is that we can implement it even when we know π(θ)
only up to some proportionality constants Zπ, that is, when

π(θ) =
π̂(θ)

Zπ
, Zπ =

∫
π̂(θ)dθ (4.17)

It is easy to check that one can perform the rejection sampling method as in Algorithm
4.2 for any M such that π̂(θ) ≤Mq(θ) for all θ ∈ Θ.

Algorithm 4.2: Rejection sampling with unnormalised densities

1 Generate θ′ ∼ q(θ′) and u ∼ Unif(0, 1).

2 If u ≤ π̂(θ′)
Mq(θ′)

, accept θ = θ′; else go to 1.

Justification of Algorithm 4.2 would follow from similar steps to those in (4.16). Also,
in that case, the acceptance probability would be Zπ/M .

Exercise 4.9. Show that the modified rejection sampling method described in Section
C.1.1 for unnormalised densities is valid, i.e. the accepted sample θ ∼ π(θ), and it has
the acceptance probability Zπ/M as claimed. The derivation is similar to those in (4.15),
(4.16).

The unknown normalising constant issue mostly arises in Bayesian inference when we
want to sample from a posterior distribution. The posterior density of θ given X = x is
proportional to

p(θ|x) ∝ p(θ)p(x|θ) (4.18)

where the normalising constant p(x) =
∫
p(θ)p(x|θ)dθ is usually intractable. Suppose we

want to sample from p(θ|x). When p(θ|x) is not the density of a well known distribution,
we may be able to use rejection sampling. If we can find M > 0 such that p(x|θ) ≤M for
all θ ∈ Θ, and the prior distribution with density p(θ) is easy to sample from, then we can
use rejection sampling with q(θ) = p(θ).

1. Sample θ′ ∼ p(θ′) and u ∼ Unif(0, 1),

2. If u ≤ p(x|θ′)/M , accept θ = θ′; otherwise go to step 1.

Exercise 4.10. Consider the example in Example 4.11. Write a function that takes
the noisy measurements x = (x1, x2, x3), positions of the sensors s1, s2, s3, the prior
and likelihood variances σ2

θ and σ2
x, and the number of samples N as inputs, implements

rejection sampling to draw i.i.d. samples from the posterior p(θ|x). Try your code with
s1 = (0, 2), s2 = (−2,−1), s3 = (1,−2), x1 = 2, x2 = 1.6, x3 = 2.5, σ2

θ = 100, and σ2
x = 1

which are the values used to generate the plots in Figure 4.2.
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C.2 Importance sampling

Consider the expectation with respect to the target distribution

Eπ(ϕ(θ)) =

∫
Θ

ϕ(θ)π(θ)dθ.

In order to estimate the expectation by a Monte Carlo plug-in estimator

1

N

N∑
i=1

ϕ(θ(i)), (4.19)

we need i.i.d. samples from π(θ) and in the previous chapter we covered some exact sam-
pling methods for generating θ(i) ∼ π, i = 1, . . . , N .

However, there are many cases where θ ∼ π is either impossible or too difficult, or
wasteful. For example, rejection sampling uses only about 1/M of generated random
samples to construct an approximation to π. To generate N samples, we need on average
NM iterations of rejection sampling. The number M can be very large, especially in high
dimensions, and rejection sampling may be wasteful.

In contrast to rejection sampling, importance sampling uses every sample but weights
each one according to the degree of similarity between the target and instrumental distri-
butions. We describe the importance sampling method assuming that π(θ) is a probability
density function - the discrete version should be easy to figure out afterwards.

Suppose there exists a distribution with density q(θ) such that q(θ) > 0 whenever
π(θ) > 0. Given π(θ) and q(θ), define the weight function w : Θ→ R

w(θ) :=

{
π(θ)/q(θ), q(θ) > 0,

0 q(θ) = 0.
(4.20)

The idea of importance sampling follows from the importance sampling fundamental iden-
tity : We can rewrite the expectation as

Eπ(ϕ(θ)) =

∫
θ

ϕ(θ)π(θ)dθ

=

∫
Θ

ϕ(θ)
π(θ)

q(θ)
q(θ)dθ

=

∫
Θ

ϕ(θ)w(θ)q(θ)dθ

= Eq(ϕ(θ)w(θ)),

This identity can be used with a q(θ) which is easy to sample from, which leads to impor-
tance sampling given in Algorithm 4.3

The weights w(θ(i)) are known as the importance sampling weights. Note that (4.21)
is another plug-in estimator for the same expectation, but constructed with a different
distribution and function. Therefore the estimator in (4.21) is an unbiased estimator of
Eπ(ϕ(θ)).
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Algorithm 4.3: Importance sampling

1 for i = 1, . . . , N do
2 Sample θ(i) ∼ q(θ), and calculate w(θ(i)) according to (4.20).

3 Calculate the approximation of the expectation Eπ(ϕ(θ)) as

1

N

N∑
i=1

ϕ(θ(i))w(θ(i)). (4.21)

Example 4.13. Suppose we have a joint pdf p(θ, x) written as

p(θ, x) = p(θ)p(x|θ)

In the Bayesian framework where θ is the unknown parameter and x is the observed variable
(or data), the prior p(θ) is usually easy to sample from, and the likelihood p(x|θ) is easy
to compute.

In certain applications, we want to compute the evidence p(x) at a given value x of the
data. We can write p(x) as

p(x) =

∫
Θ

p(θ, x)dθ

=

∫
Θ

p(θ)p(x|θ)dθ

= Ep(θ)(p(x|θ))

where the last line highlights the crucial observation that given x, the likelihood can be
thought as a function of θ, that is, ϕ(θ) = p(x|θ), and p(x) can be written as an expectation
of ϕ(θ) with respect to the prior p(θ). Therefore, p(x) can be estimated using a plug-in
estimator where we sample θ(1), . . . , θ(N) ∼ p(θ) and estimate p(x) as

p(x) ≈ 1

N

N∑
i=1

p(x|θ(i)), θ(1), . . . , θ(N) ∼ p(θ).

However, we do not have to sample from p(θ). We can use importance sampling with an
importance density q(θ).

p(x) ≈ 1

N

N∑
i=1

p(θ(i))

q(θ(i))
p(x|θ(i)), θ(1), . . . , θ(N) ∼ q(θ).

Being able to approximate a marginal distribution as in p(θ) has an important role in
Bayesian model selection, where hypotheses regarding the distributions involved in the
statistical model are compared.
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C.2.1 Self-normalised importance sampling

Like rejection sampling, the importance sampling method can be modified for the cases
when π(θ) = π̂(θ)

Zπ
and we only have π̂(θ). This time, letting

w(θ) :=

{
π̂(θ)
q(θ)

, q(θ) > 0

0, q(θ) = 0,

observe that

Eq(w(θ)) =

∫
π̂(θ)

q(θ)
q(θ)dθ

=

∫
π(θ)Zp
q(θ)

q(θ)dθ

= Zπ.

and

Eq(w(θ)ϕ(θ)) =

∫
π̂(θ)

q(θ)
ϕ(θ)q(θ)dθ

=

∫
π(θ)Zπ
q(θ)

ϕ(θ)q(θ)dθ

= Eπ(ϕ(θ))Zπ.

Therefore, we can write the fundamental identity of importance sampling in terms of π̂ as

Eπ(ϕ(θ)) =
Eq(w(θ)ϕ(θ))

Eq(w(θ))
.

The importance sampling method can be modified to approximate both the nominator, the
unnormalised estimate, and the denominator, the normalisation constant, by using Monte
Carlo. Sampling θ(1), . . . , θ(N) from q, we have the approximation

1
N

∑N
i=1 ϕ(θ(i))w(θ(i))

1
N

∑N
i=1w(θ(i))

=
N∑
i=1

W (i)ϕ(θ(i)). (4.22)

where

W (i) =
w(θ(i))∑N
j=1w(θ(j))

are called the normalised importance weights as they sum up to 1. The resulting method,
which is called self-normalised importance sampling is given in Algorithm 4.4: Being the
ratio of two unbiased estimators, the estimator of the self-normalised importance sampling
is biased for finite N . However, its consistency and stability are provided by a strong law
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Algorithm 4.4: Self-normalised importance sampling

1 for i = 1, . . . , N do

2 Generate θ(i) ∼ Q, calculate w(θ(i)) = π̂(θ(i))

q̂(θ(i))
.

3 for i = 1, . . . , N do

4 Set W (i) = w(θ(i))∑N
j=1 w(θ(j))

.

5 Calculate the approximation to the expectation

Eπ(ϕ(θ)) ≈
N∑
i=1

W (i)ϕ(θ(i))

of large numbers and a central limit theorem. In the same work, the variance of the self-
normalised importance sampling estimator is analysed and an approximation is provided,
which reveals that self-normalised importance sampling can provide lower variance esti-
mates than the unnormalised importance sampling method. Also, normalised importance
sampling has the nice property of estimating a constant by itself, unlike the unnormalised
importance sampling method. Therefore, this method can be preferable to its unnor-
malised version even if it is not the case that π and q are known only up to proportionality
constants.

Self-normalised importance sampling is also called Bayesian importance sampling, since,
in most Bayesian inference problems, the normalising constant of the posterior distribution
is unknown.

Example 4.14. Let us consider a posterior distribution

p(θ|x) ∝ p(θ)p(x|θ)

with the unknown normalising constant is p(x) =
∫
p(θ)p(x|θ)dθ. Given the data X = x,

we want to calculate the expectation of ϕ : Θ→ R with respect to p(θ|x)

E(ϕ(θ)|X = x) =

∫
p(θ|x)ϕ(θ)dθ.

Since we know p(θ|x) only up to a proportionality constant, we use self-normalised impor-
tance sampling. With the choice of q(θ), self-normalised importance sampling becomes

1. For i = 1, . . . , N ; generate θ(i) ∼ q(θ), calculate

w(θ(i)) =
p(θ(i))p(x|θ(i))

q(θ(i))
.

2. For i = 1, . . . , N ; set W (i) = w(θ(i))∑N
j=1 w(θ(j))

.
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3. Approximate E(ϕ(θ)|X = x) ≈
∑N

i=1W
(i)ϕ(θ(i)).

If we choose q(θ) = p(θ), i.e. the prior density, then w(θ) = p(x|θ) reduces to the likelihood.
But this is not always a good idea as we will see in the next example.

Example 4.15. Suppose we have an unknown mean parameter θ ∈ R whose prior distribu-
tion is given by θ ∼ N (µ, σ2). Conditional on θ, n observations X = (X1, . . . , Xn) ∈ Rn

are generated independently

X1, . . . , Xn|θ
i.i.d.∼ Unif(θ − a, θ + a).

We want to estimate the posterior mean of θ given X = x = (x1, . . . , xn), i.e. E(θ|X =
x) =

∫
p(θ|x)θdθ, where

p(θ|x) ∝ p(θ)p(x|θ)
The prior density and likelihood are p(θ) = φ(θ;µ, σ2) and p(x|θ) =

∏n
i=1

1
2a
I(θ−a,θ+a)(xi),

so the posterior distribution can be written as

p(θ|x) ∝ φ(θ;µ, σ2)
1

(2a)n

n∏
i=1

I(θ−a,θ+a)(xi)

Densities p(θ) and p(θ, x) versus θ for a fixed X = x = (x1, . . . , xn) with n = 10 generated
from the marginal distribution of X with a = 2, µ = 0, and σ2 = 10 are given in Figure
4.3. Note that the second plot is proportional to the posterior density.

We can use self-normalised importance sampling to estimate E(θ|X = x). The choice of
the importance density is critical here: Suppose we chose q(θ) to be the prior distribution
for θ, i.e. q(θ) = φ(θ;µ, σ2). This is a valid choice, however if a is small and σ2 is relatively
large, it is likely that the resulting weight function

w(θ) =
1

(2a)n

n∏
i=1

I(θ−a,θ+a)(xi).

will end up being zero for most of the generated samples from q(θ) and it will be 1
(2a)n

for
few samples. This results in a high variance in the importance sampling estimator. What
is worse, it is possible to have zero weights for all samples and hence the denominator in
(4.22) can be zero. Therefore the estimator is a poor one.

Let xmax = maxi xi and xmin = mini xi. A careful inspection of p(θ|x) reveals that given
x = (x1, . . . , xn), θ must be contained in (xmax − a, xmin + a). In other words,

θ ∈ (xmax − a, xmin + a)⇔ θ − a < xi < θ + a, ∀i = 1, . . . , n.

Therefore, a better importance density does not waste its time outside the interval (xmax−
a, xmin + a) and generate samples in that interval. As an example, we can choose q(θ) the
density of Unif(xmax − a, xmin + a). With that choice, the weight function will be

w(θ) =

{
φ(θ;µ,σ2) 1

(2a)n

1/(2a+xmin−xmax)
, θ ∈ (xmax − a, xmin + a)

0, else
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Note that since we are using the self-normalised importance sampling estimator and hence
we normalise the weights W (i) = w(θ(i))/

∑N
j=1 w(θ(j)), we do not need to calculate the

constant factor (2a+ xmin − xmax)/(2a)n for the weights.
Figure 4.4 compares the importance sampling estimators with the two different impor-

tance distributions mentioned above. The histograms are generated from 10000 Monte
Carlo runs (10000 independent estimates of the posterior mean) for each estimator. Ob-
serve that the estimates obtained when the importance distribution is selected the prior
distribution is more widespread, exhibiting a higher variance.

-20 -10 0 10 20

x

0

0.02

0.04

0.06

0.08

0.1

p
X
(x)

p
X
(x)

y
1
, ..., y

10

3 4 5 6

x

0

1

2

3

4

5

6
×10

-8 p
X, Y

(x, y) = p
X
(x)p

Y |X
(y | x)

p
X, Y

(x, y)

y
1
, ..., y

10

Figure 4.3: p(θ) and p(θ, x) vs θ for the problem in Example 4.15 with n = 10 and a = 2
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Figure 4.4: Histograms for the estimate of the posterior mean using two different impor-
tance sampling methods as described in Example 4.15 with n = 10 and a = 2.

Exercise 4.11. Consider the example in Example 4.11. Write a function that takes the
noisy measurements x = (x1, x2, x3), positions of the sensors s1, s2, s3, the prior and
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likelihood variances σ2
θ and σ2

x, and the number of samples N as inputs, implements self-
normalised importance sampling (why this version?) in order to approximate

E(θ|X = x) = [E(θ1|X = x), E(θ2|X = x)].

and outputs its estimate. Try your code with s1 = (0, 2), s2 = (−2,−1), s3 = (1,−2),
x1 = 2, x2 = 1.6, x3 = 2.5, σ2

θ = 100, and σ2
x = 1 which are the values used to generate

the plots in Figure 4.2.

C.3 Markov chain Monte Carlo

We have already discussed the difficulties of generating a large number of i.i.d. samples
from a posterior distribution π(θ) = p(θ|x). One alternative was importance sampling
which involved weighting every generated sample in order not to waste it, but it has
its drawbacks mostly due to issues related to controlling the variance of the importance
weights. Another alternative is to use Markov chain Monte Carlo (MCMC) methods These
methods are based on the design of a suitable ergodic Markov chain whose stationary
distribution is π(θ). The idea is that if one simulates such a Markov chain, after a long
enough time the samples of the Markov chain will approximately be distributed according
to π(θ). Although the samples generated from the Markov chain are not i.i.d., their use is
justified by convergence results for dependent random variables in the literature.

C.3.1 Metropolis-Hastings

As previously stated, an MCMC method is based on a discrete-time ergodic Markov chain
which has its stationary distribution as π. The most widely used MCMC algorithm up to
date is the Metropolis-Hastings algorithm.

The Metropolis-Hastings algorithm requires a Markov transition kernel on Θ for propos-
ing new values from the old ones. Assume that the pdf/pmf of that transition kernel is q(·|θ)
for any θ. Given the previous sample θn−1 a new value for θn is proposed as θ′ ∼ q(θ′|θn−1).
The proposed sample θ′ is accepted with the acceptance probability α(θn−1, θ

′), where the
function α : Θ×Θ→ [0, 1] is defined as

α(θ, θ′) = min

{
1,
π(θ′)q(θ|θ′)
π(θ)q(θ′|θ)

}
, θ, θ′ ∈ Θ.

If the proposal is accepted, θn = θ′ is taken. Otherwise, the proposal is rejected and
θn = θn−1 is taken.

The ratio in the acceptance probability

r(θ, θ′) =
π(θ′)q(θ|θ′)
π(θ)q(θ′|θ)

is called the acceptance ratio, or the acceptance rate.
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Algorithm 4.5: Metropolis-Hastings

1 Begin with some θ1 ∈ Θ.
2 for n = 2, 3, . . . do
3 Sample θ′ ∼ q(θ′|θn−1).
4 Set θn = θ′ with probability

α(θn−1, θ
′) = min

{
1,

π(θ′)q(θn−1|θ′)
π(θn−1)q(θ′|θn−1)

}
,

else set θn = θn−1.

The invariant distribution of the Metropolis-Hastings algorithm described exists and it
is π. To show this, we can check for the detailed balance condition. According to Algorithm
4.5, the transition kernel M of the Markov chain from which the samples are obtained is

M(θ′|θ) = q(θ′|θ)α(θ, θ′) + pr(θ)δθ(θ
′),

where pr(θ) is the rejection probability at θ and

pr(θ) =

[
1−

∫
q(θ′|θ)α(θ, θ′)dθ′

]
, or pr(θ) =

[
1−

∑
θ′

q(θ′|θ)α(θ, θ′)

]
depending on the nature of the state-space. For all θ, θ′ ∈ Θ, we have

π(θ)M(θ′|θ) = π(θ)q(θ′|θ)α(θ, θ′) + π(θ)pr(θ)δθ(θ
′)

= π(θ)q(θ′|θ) min

{
1,
π(θ′)q(θ|θ′)
π(θ)q(θ′|θ)

}
+ π(θ)pr(θ)δθ(θ

′)

= min {π(θ)q(θ′|θ), π(θ′)q(θ|θ′)}+ π(θ)pr(θ)δθ(θ
′)

= min {π(θ′)q(θ|θ′), π(θ)q(θ′|θ)}+ π(θ′)pr(θ
′)δθ′(θ)

which is symmetric with respect to θ, θ′, so π(θ)M(θ′|θ) = π(θ′)M(θ|θ′) and the detailed
balance condition holds for π which implies that M is reversible with respect to π and π
is invariant for M .

When a symmetric proposal is used, the acceptance probability involves only the ratio
of the target distribution evaluated at θ and θ′,

α(θ, θ′) = min

{
1,
π(θ′)

π(θ)

}
, if q(θ′|θ) = q(θ|θ′).

Another version is the independence Metropolis-Hastings algorithm, where, as the name
suggests, the proposal kernel Q is chosen to be independent of the current value, i.e.
q(θ′|θ) = q(θ′), in which case the acceptance probability is

α(θ, θ′) = min

{
1,
π(θ′)q(θ)

π(θ)q(θ′)

}
.
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Toy example: MH for the normal distribution: This is a toy example where π(θ) =
φ(θ;µ, σ2) for which we do not need to use MH since we can obviously sample fromN (µ, σ2)
easily. But for the sake of example assume that we have decided to use MH to generate
approximate samples from π.

For the proposal kernel, we have several options:

• Symmetric random walk: We can take q(θ′|θ) = φ(θ′; θ, σ2
q ), that is θ′ is proposed

from the current value θ by adding a normal random variable with zero mean and
variance σ2

q , or q(·|θ) ∼ N (θ, σ2
q ). Since

q(θ′|θ) = φ(θ′; θ, σ2
q ) = φ(θ; θ′, σ2

q ) = q(θ|θ′),

this results in the acceptance ratio

r(θ, θ′) =
π(θ′)q(θ|θ′)
π(θ)q(θ′|θ)

=
φ(θ′;µ, σ2)

φ(θ;µ, σ2)

=

1√
2πσ2

e−
1

2σ2
(θ′−µ)2

1√
2πσ2

e−
1

2σ2
(θ−µ)2

= e−
1

2σ2
[(θ′−µ)2−(θ−µ)2]

The choice of σ2
q is important for MH to have good performance. We want the

Markov chain generated by the algorithm to mix well, that is we want the samples
to forget the previous values fast. Consider the acceptance ratio above:

– A too small value for σ2
q will result in the acceptance ratio r(θ, θ′) being very

close to 1, and hence the proposed values will be accepted with high probability.
However, the chain will be very slowly mixing, that is the samples will be highly
correlated; because any accepted sample θ′ will most likely be only slightly
different than the current θ due to a small step-size of the random walk.

– A too large value for σ2
q will likely result in the proposed value θ′ to be far from

the region where π has most of its mass, hence π(θ′) will be very small compared
to π(θ) and the chain will likely reject the proposed value and stick to the old
value θ. This will create a sticky chain.

Therefore, the optimum value for σ2
q should be neither too small nor too large. See

Figure 4.5 for both bad choices and one in between those. This phenomenon of
having to choose the variance of the random walk proposals neither too small nor
too big is also valid for most distributions than the normal distribution.

• Another option for the proposal is to sample θ′ independently from θ, i.e. q(θ′|θ) =
q(θ′). For example, suppose we chose q(θ) = φ(θ;µq, σ

2
q ). Then the acceptance ratio
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Figure 4.5: Random walk MH for π(θ) = φ(θ; 2, 1). The left and middle plots correspond
to a too small and a too large value for σ2

q , respectively. All algorithms are run for 50000
iterations. Both the trace plots and the histograms show that the last choice works the
best.

is

r(θ, θ′) =
π(θ′)q(θ)

π(θ)q(θ′)

=
φ(θ′;µ, σ2)φ(θ;µq, σ

2
q )

φ(θ;µ, σ2)φ(θ′;µq, σ2
q )

=

1√
2πσ2

e−
1

2σ2
(θ′−µ)2 1√

2πσ2
q

e
− 1

2σ2q
(θ−µq)2

1√
2πσ2

e−
1

2σ2
(θ−µ)2 1√

2πσ2
q

e
− 1

2σ2q
(θ′−µq)2

= e
− 1

2σ2
[(θ′−µ)2−(θ−µ)2]+ 1

2σ2q
[(θ′−µq)2−(θ−µq)2]

See Figure 4.6 for examples of MH with this choice.

• Another alternative is to use a gradient-guided proposal. We may want to ‘guide’ the
chain towards the high-probability region of π(θ); one proposal that can be chosen
for that purpose is

q(θ′|θ) = φ(θ′; g(θ), σ2
q )

where the mean for the proposal g(θ) is constructed by using the gradient of the
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Figure 4.6: Independence MH for π(θ) = φ(θ; 2, 1).

logarithm of the target density,

g(θ) = θ + γ
∂ log π(θ)

∂θ
.

Here, γ is a step-size parameter that needs to be adjusted. For π(θ) = φ(θ;µ, σ2),
g(θ) = θ − γ

σ2 (θ − µ). The acceptance ratio for this choice of proposal becomes

r(θ, θ′) = e
− 1

2σ2
[(θ′−µ)2−(θ−µ)2]+ 1

2σ2q

[
(θ′−θ+ γ

σ2
(θ−µ))

2
−(θ−θ′+ γ

σ2
(θ′−µ))

2
]

See Figure 4.7 for examples of MH with this choice.

Example 4.16 (Normal distribution with unknown mean and variance). We have
observations X1, . . . , Xn ∼ N (z, s) and z and s are unknown. The parameters θ = (z, s)
are a priori independent with z ∼ N (m,κ2) and s ∼ IG(α, β), so that the prior density is

p(θ) = p(z)p(s) =
1√

2πκ2
e−

1
2κ2

(z−m)2 βα

Γ(α)
s−α−1e−

β
s

Given the data X1:n = x1:n, we want to run the MH algorithm to sample from the posterior
distribution π(θ) = p(θ|x1:n), which is given by

π(θ) = p(θ|x1:n) ∝ p(θ)p(x1:n|θ) = p(z)p(s)
n∏
i=1

φ(xi; z, s)

For this problem, π(θ) indeed lacks a well-known form, so it is justified to use a Monte
Carlo method for it.
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Figure 4.7: Gradient-guided MH for π(θ) = φ(θ; 2, 1).

To run the MH algorithm, we need a proposal distribution for proposing θ′ = (z′, s′). In
this example, given θ = (z, s), we decide to propose z′ ∼ N (z, σ2

q ) and s′ ∼ IG(α, β), i.e.
we use a random walk for the mean component and the prior distribution for the variance
parameter. With this choice, the proposal density becomes

q(θ′|θ) = φ(z′; z, σ2
q )p(s

′)

= φ(z′; z, σ2
q )

βα

Γ(α)
(s′)−α−1e−

β
s′

The acceptance ratio in this case is

r(θ, θ′) =
π(θ′)q(θ|θ′)
π(θ)q(θ′|θ)

=
p(z′)p(s′) [

∏n
i=1 p(xi|z′, s′)]φ(z; z′, σ2

q )p(s)

p(z)p(s) [
∏n

i=1 p(xi|z, s)]φ(z′; z, σ2
q )p(s

′)

=
φ(z′;m,κ2)

∏n
i=1 φ(xi; z

′, s′)

φ(z;m,κ2)
∏n

i=1 φ(xi; z, s)

See Figure 4.8 for results obtained from this MH algorithm.

Exercise 4.12. Implement the MH algorithm in Example 4.16 on the data given in
normal.txt. Use α = 5 and β = 10, m = 0, and κ2 = 100 as the prior parameters,
and σ2

q = 1 for the proposal.

Example 4.17 (A changepoint model). In this example, we consider a changepoint
model. In this model, at each time t we observe the count of an event Xt. All the counts
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Figure 4.8: MH for parameters of N (z, s). σ2
q = 1, α = 5, β = 10, m = 0, κ2 = 100.

up to an unknown time τ come from the same distribution after which the distribution
changes. We assume that the changepoint τ is uniformly distributed over {1, . . . , n} where
n is the number of time steps. The two different distributional regimes up to τ and after
τ are indicated by the random variables λi, i = 1, 2, which are a priori assumed to follow
a Gamma distribution

λi ∼ Γ(α, β), i = 1, 2.

Under regime i, the counts are assumed to be identically Poisson distributed

Xt ∼

{
PO(λ1), 1 ≤ t ≤ τ

PO(λ2), τ < t ≤ n.

A typical draw from this model is shown in Figure 4.9. The inferential goal is, given
X1:n = x1:n, to sample from the posterior distribution of the changepoint location τ and
the intensities λ1, λ2 given the count data, i.e., letting θ = (τ, λ1, λ2), the target distribution
is π(θ) = p(τ, λ1, λ2|x1:n) which is given by

p(τ, λ1, λ2|x1:n) ∝ p(τ, λ1, λ2, x1:n)

= p(τ, λ1, λ2)p(x1:n|τ, λ1, λ2)

= p(τ)p(λ1)p(λ2)p(x1:n|τ, λ1, λ2)

=
1

n

βαλα−1
1 e−βλ1

Γ(α)

βαλα−1
2 e−βλ2

Γ(α)

τ∏
t=1

e−λ1λxt1

xt!

n∏
t=τ+1

e−λ2λxt2

xt!
(4.23)

Two choices for the proposal will be considered. Let θ′ = (τ ′, λ′1, λ
′
2).

• The first one is to use an independent proposal distribution, which is the prior dis-
tribution for x

q(θ′|θ) = q(θ′) = p(θ′) = p(τ ′, λ′1, λ
′
2).

This leads to the acceptance ratio being the ratio of the likelihoods

r(θ, θ′) =
p(x1:n|τ ′, λ′1, λ′2)

p(x1:n|τ, λ1, λ2)
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Figure 4.9: An example data sequence of length n = 100 generated from the Poisson
changepoint model with parameters τ = 30, λ1 = 10 and λ2 = 5.

• The second choice is a symmetric proposal,

q(θ′|θ) =

[
1

2
Iτ+1(τ ′) +

1

2
Iτ−1(τ ′)

]
φ(λ′1;λ1, σ

2
λ)φ(λ′2;λ2, σ

2
λ).

The first factor involving τ indicates that we propose either τ ′ = τ + 1 or τ ′ = τ − 1
both with probability a half. Since q(θ′|θ) = q(θ|θ′), the acceptance ratio reduces to
the ratio of the posteriors

r(θ, θ′) =
p(τ ′, λ′1, λ

′
2|y1:n)

p(τ, λ1, λ2|x1:n)

=e−(τ+β)(λ′1−λ1)e−(n−τ+β)(λ′2−λ2)

(
λ′1
λ1

)α−1+
∑τ
t=1 xt

(
λ′2
λ2

)α−1+
∑n
t=τ+1 xt

×

e
−λ′1+λ′2

(
λ′1
λ′2

)xτ+1

, τ ′ = τ + 1,

e−λ
′
2+λ′1

(
λ′2
λ′1

)xτ
, τ ′ = τ − 1.

Figure 4.10 illustrates the results obtained from the two algorithms. The initial value
for τ is taken bn/2c and for λ1 and λ2 we start from the mean of x1:n. As we can see, the
symmetric proposal algorithm can explore the posterior distribution much more efficiently.
This is because the proposal distribution in independence MH, which is chosen as the prior
distribution, takes neither the posterior distribution (hence the data) nor the previous
sample into account, and as a result, it has a large rejection rate. The independence
sampler would become even poorer if n were larger so that the posterior would be more
concentrated in contrast to the ignorance of the prior distribution.

Example 4.18 (MCMC for source localisation). Consider the source localisation sce-
nario in Example 4.11. From the likelihood and the prior in (4.12) and (4.13), the posterior
distribution of the unknown position is

p(θ|x) ∝ φ(θ1; 0, σ2
θ)φ(θ2; 0, σ2

θ)
3∏
i=1

φ(xi; ri, σ
2
x) (4.24)
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Figure 4.10: MH for parameters of the Poisson changepoint model

Due to the non-linearity in the ri = ||θ − si|| = [(θ1 − si(1))2 + (θ2 − si(2))2]1/2, i =
1, 2, 3, p(θ|x) does not admit a known distribution. We use the MH algorithm to generate
approximate samples from p(θ|x). We use a symmetric random walk proposal distribution
with q(θ′|θ) = φ(θ′; θ, σ2

qI2), so that q(θ′|θ) = q(θ|θ′). The resulting acceptance rate

r(θ, θ′) =
p(θ′|x)q(θ|θ′)
p(θ|x)q(θ′|θ)

=
p(θ′|x)

p(θ|x)

=
φ(θ′1; 0, σ2

θ)φ(θ′2; 0, σ2
θ)
∏3

i=1 φ(xi; r
′
i, σ

2
x)

φ(θ1; 0, σ2
θ)φ(θ2; 0, σ2

θ)
∏3

i=1 φ(xi; ri, σ2
x)

where r′i = ||θ′ − si||, i = 1, 2, 3 is the distance between the proposed value θ′ and the
location i’th source si. Figure 4.11 shows the samples and their histograms obtained from
10000 iterations of the MH algorithm. The chain was started from θ = (5, 5) and its
convergence to the posterior distribution is illustrated in the right pane of the figure where
we see the first a few samples of the chain traveling to the high probability region of the
posterior distribution.

Exercise 4.13. Implement the MH algorithm for the source localisation problem in Ex-
ample 4.18. Use s1 = (0, 2), s2 = (−2,−1), s3 = (1,−2), x1 = 2, x2 = 1.6, x3 = 2.5,
σ2
θ = 100, and σ2

x = 1

C.3.2 Gibbs sampling

The Gibbs sampler is one of the most popular MCMC methods, which can be used when θ
has more than one dimension. If θ has d > 1 components (of possibly different dimensions)
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Figure 4.11: MH for the source localisation problem.

such that θ = (θ1, . . . , θd), and one can sample from each of the full conditional distributions
πk (·|θ1:k−1, θk+1:d), then the Gibbs sampler produces a Markov chain by updating one
component at a time using πk’s. One cycle of the Gibbs sampler successively samples from
the conditional distributions π1, . . . , πd by conditioning on the most recent samples.

Algorithm 4.6: The Gibbs sampler:

1 Begin with some θ1 ∈ Θ.
2 for n = 2, 3, . . . do
3 for k = 1, . . . , d do
4

θn,k ∼ πk(·|θn,1:k−1, θn−1,k+1:d).

For an θ ∈ Θ, let θ−k = (θ1:k−1, θk+1:d) for k = 1, . . . , d denotes the components of x
excluding θk, and let us permit ourselves to write θ = (θk, θ−k). The corresponding MCMC
kernel of the Gibbs sampler can be written as M = M1M2 . . .Md, where each transition
kernel Mk for k = 1, . . . , d can be written as

Mk(θ
′|θ) = πk(θ

′
k|θ−k)δθ−k(θ′−k)

where θ′ = (θ′1, . . . , θ
′
d). The justification of the transitional kernel comes from the re-

versibility of each Mk with respect to π, which can be verified from the detailed balance
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condition as follows.

π(θ)Mk(θ
′|θ) = π(θ)πk(θ

′
k|θ−k)δθ−k(θ′−k)

= π(θ−k)πk(θk|θ−k)πk(θ′k|θ−k)δθ−k(θ′−k)
= π(θ′−k)πk(θ

′
k|θ′−k)πk(θk|θ′−k)δθ′−k(θ−k)

= π(θ′)Mk(θ|θ′), (4.25)

where the third line follows the second since δθ−k(θ
′
−k) allows the interchange of θ−k and

θ′−k. Therefore, the detailed balance condition for Mk is satisfied with π and πMk = π. If
we apply M1, . . . ,Mk sequentially, we get

πM = πM1 . . .Md = (πM1)M2 . . .Md = πM2 . . .Md = . . . = π,

so π is indeed the invariant distribution for the Gibbs sampler.

Gibbs sampling as a special Metropolis-Hastings algorithm: An insightful inter-
pretation of (4.25) is that each step of a cycle of Gibbs sampling is a Metropolis-Hastings
move whose MCMC kernel is equal to its proposal kernel which results in the acceptance
probability being 1 uniformly. Indeed, if the k’th component of θ is to be updated with
Qk = Mk, i.e. if we propose the new value θ′ as

qk(θ
′|θ) = Mk(θ

′|θ) = πk(θ
′
k|θ−k)δθ−k(θ′−k),

the acceptance ratio αk(θ, θ
′) for this move is

αk(θ, θ
′) = min

{
1,
π(θ′)qk(θ|θ′)
π(θ)qk(θ′|θ)

}
= min

{
1,
π(θ′)Mk(θ|θ′)
π(θ)Mk(θ′|θ)

}
= 1

as shown in (4.25).

Example 4.19. Suppose we wish to sample from a bivariate normal distribution, where

π(θ) =
1√

2π(1− ρ2)
exp

{
−θ

2
1 + θ2

2 − 2ρθ1θ2

2(1− ρ2)

}
, ρ ∈ (−1, 1).

The full conditionals are

π(θ1|θ2) ∝ π(θ1, θ2) ∝ exp

{
−(θ1 − ρθ2)2

2(1− ρ2)

}
therefore π(θ1|θ2) = φ(θ1; ρθ2, (1 − ρ2)) and θ1|θ2 ∼ N (ρθ2, (1 − ρ)2). Similarly, we have
θ2|θ1 ∼ N (ρθ1, (1− ρ)2). So, the iteration t ≥ 2 of the Gibbs sampling algorithm for this
π(θ) is

• Sample θt,1 ∼ N (ρθt−1,2, (1− ρ)2),
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• Sample θt,2 ∼ N (ρθt,1, (1− ρ)2).

Example 4.20 (ex: Normal distribution with unknown mean and variance). Let
us get back to the problem in Example 4.16 where we want to estimate the mean and the
variance of the normal distributionsN (z, s) given samples x1, . . . , xn generated from it. Let
use the same prior distributions for z and s, namely z ∼ N (m,κ2) and s ∼ IG(α, β). Note
that these are the conjugate priors for those parameters; and when one of the parameters
is given, the posterior distribution of the other one has a known form. Indeed, in Examples
4.5 and 4.6, we derived these full conditional distributions. Example 4.5 can be revisited
(but this time with a non-zero prior mean m) to see that

z|s, x1:n ∼ N (µz|s,x, σ
2
z|s,x)

where

σ2
z|s,x =

(
1

κ2
+
n

s

)−1

, µz|s,x =

(
1

κ2
+
n

s

)−1
(

1

s

n∑
i=1

xi +
m

κ2

)
and from Example 4.6 we can deduce that

s|z, x1:n = IG(αs|z,x, βs|z,x)

where

αs|z,x = α +
n

2
, βs|z,x = β +

1

2

n∑
i=1

(xi − z)2.

Therefore, Gibbs sampling for (z, s) given X1:n = x1:n is

• Sample zt ∼ N
((

1
κ2

+ n
st−1

)−1 (
1

st−1

∑n
i=1 xi + m

κ2

)
,
(

1
κ2

+ n
st−1

)−1
)

• Sample st ∼ IG
(
α + n

2
, β + 1

2

∑n
i=1(xi − zt)2

)
.

Exercise 4.14. Implement the Gibbs sampler in Example 4.20 on the data given in
normal.txt. Use α = 5 and β = 10 as the prior parameters.

Data augmentation: Data augmentation is an application of the Gibbs sampler. It is
useful if

1. there is missing data, and/or

2. the likelihood is intractable (hard to compute or does not admit conjugacy, etc), but
given some additional unobserved (real or fictitious) data it would be tractable.

Let xobs denote the observed data and xmis the missing data (sometimes xmis is called a
latent variable). We suppose we can easily sample θ from the posterior given the augmented
data (xobs, xmis). Also, that we can sample xmis, conditional on xobs and θ (this only involves
the sampling distributions). Then we can use the Gibbs sampler of the pair (θ, xmis). Then
we perform Monte Carlo marginalisation: If in the resulting joint distribution for θ, xmis

given xobs we simply ignore xmis, we shall have our sample from the posterior of θ given
xobs alone.
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Example 4.21 (Genetic linkage). Genetic linkage in an animal can be allocated to one
of four categories, coded 1,2, 3, and 4, having respective probabilities

(1/2 + θ/4, (1− θ)/4, (1− θ)/4, θ/4)

where θ is an unknown parameter in (0, 1). For a sample of 197 animals, the (multi-
nomial) counts of those falling in the 4 categories are represented by random variables
X = (X1, X2, X3, X4), with observed values x = (x1, x2, x3, x4) = (125, 18, 20, 34). Sup-
pose we place a Beta(α, β) prior on θ. Then,

π(θ) = p(θ|x) ∝
(

1

2
+
θ

4

)125(
1− θ

4

)18+20(
θ

4

)34

︸ ︷︷ ︸
Multinomial likelihood

θα−1(1− θ)β−1

∝ (2 + θ)125(1− θ)38+β−1θ34+α−1 (4.26)

How can we sample from this? We can use a rejection sampler (probably with a very high
rejection probability) or MH for this posterior distribution. In this example, we seek a
suitable Gibbs sampler. Note that the problematic part in (4.26) is the first one; should it
be like one of the others, the posterior would lend itself to a Beta distribution.

Suppose we divide category 1, with total probability 1/2 + θ/4, into two latent sub-
categories, a and b, with respective probabilities θ/4 and 1/2. We regard the number of
animals z falling in subcategory a as missing data. If, as well as the observed data x,
we are given z, we are in the situation of having observed counts (z, 125 − z, 18, 20, 34)
from a multinomial distribution with probabilities (θ/4, 1/2, (1−θ)/4, (1−θ)/4, θ/4). The
resulting joint distribution is

p(θ, z|x) ∝ p(θ, z, x) =

(
1

2

)125−z (
1− θ

4

)18+20(
θ

4

)34+z

θα−1(1− θ)β−1 (4.27)

This easily leads to the posterior distribution

θ|z, x ∼ Beta(z + 34 + α, 38 + β). (4.28)

Also, simple properties of the multinomial distribution yield

z|θ, x ∼ Binom

(
125,

θ/4

1/2 + θ/4

)
(4.29)

So we can now apply Gibbs sampling, cycling between updates given by (4.28) and (4.29).

Exercise 4.15. Design and implement a symmetric random walk MH algorithm and the
Gibbs sampling algorithm for the genetic linkage problem in Example 4.21 with hyperpa-
rameters α = β = 2.
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Example 4.22 (A changepoint model, ctd.). Consider the changepoint problem in Ex-
ample 4.17, with the same likelihood and priors. It is possible to run Gibbs sampling
algorithm for τ, λ1, λ2. Observing (4.23), where the full posterior distribution is written as
proportional to the full joint distribution

p(τ, λ1, λ2, x1:n) =
1

n

βαλα−1
1 e−βλ1

Γ(α)

βαλα−1
2 e−βλ2

Γ(α)

τ∏
t=1

e−λ1λxt1

xt!

n∏
t=τ+1

e−λ2λxt2

xt!
,

from which we can derive all the full conditionals

λ1|τ, λ2, x1:n ∼ Γ

(
α +

τ∑
t=1

xt, β + τ

)

λ2|τ, λ1, x1:n ∼ Γ

(
α +

n∑
t=τ+1

xt, β + n− τ

)
τ |λ1, λ2, x1:n ∼ Categorical(a1, . . . , an)

where the probabilities in the Categorical distribution (which is simply the discrete distri-
bution with probabilities a1, . . . , an, the generalisation of the Bernoulli distribution to the
case of multiple (here, n) outcomes) are

ai =
e−iλ1λ

∑i
t=1 xt

1 e−(n−i)λ2λ
∑n
t=i+1 xt

2∑n
j=1

[
e−jλ1λ

∑j
t=1 xt

1 e−(n−j)λ2λ
∑n
t=j+1 xt

2

]
Exercise 4.16. Consider the changepoint problem in Example 4.17.

• Download UK coal mining disaster days.txt from SUCourse. The data consists
of the day numbers of coal mining disasters between 1851 and 1962, where the first
day is the start of the 1851. It is suspected that, due to a policy change, the accident
rate over the years is a piecewise constant with a single changepoint time around the
time of the policy change.

• From the data, create another data vector of length 112, where the i’th element
contains the number of disasters in year i (starting from 1851). Note that some
years are 366 days!

• Implement the Gibbs algorithm for the changepoint model given the data that you
created. Take the priors for τ , λ1 and λ2 the same as in Example 4.17, i.e. with
hyperparameters α = 10 and β = 1. All the derivations you need are in Example
4.22.
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C.3.3 Metropolis within Gibbs

Having attractive computational properties, the Gibbs sampler is widely used. The re-
quirement for easy-to-sample conditional distributions is the main restriction for the Gibbs
sampler. Fortunately, though, replacing an exact simulation θk ∼ πk(·|θn−1,1:k−1, θn−1,k+1:d)
by a Metropolis-Hastings step in a general MCMC algorithm does not violate its valid-
ity as long as the Metropolis-Hastings step has the correct invariant distribution. The
most natural alternative to the Gibbs move in step k where sampling from the full con-
ditional distribution πk(·|θ−k) is not directly feasible is to use Metropolis-Hastings move
that updates θk by using a Metropolis-Hastings kernel that targets πk(·|θ−k).

Exercise 4.17. Suppose we observe a noisy sinusoid with with unknown amplitude a,
angular frequency ω, phase z, and noise variance σ2

x for n steps. Letting θ = (a, ω, z, σ2
x),

X|θ ∼ N (xt; a sin(ωt+ z), σ2
x), t = 1, . . . , n.

The unknown parameters are a priori independent with a ∼ N (0, σ2
a), ω ∼ Γ(α, β), z ∼

Unif(0, 2π), σ2
x ∼ IG(α, 1/β).

• Write down the likelihood of p(x1:n|θ) and the joint density p(θ, x1:n).

• Download the data file sinusoid.txt from SUCourse; the observations in the file
are your data x1:n. Use hyperparameters σ2

a = 100, α = β = 0.01 and design and
implement an MH algorithm for generating samples from the posterior distribution
π(θ) = p(θ|x1:n).

• This time, design and implement a MH within Gibbs algorithm where in each loop
contains four steps in each of which you update one component only, fixing the others,
using an MH kernel that targets the full conditionals.

Exercise 4.18. Download the logistic regression.txt from SUCourse. The data con-
tain several columns, where the last column is the response column and the other columns
have the predictor variables. For each variable, we assume a relation given by the logistic
regression model

P (Yi = 1|xi,1, . . . , xi,k, β) =
1

1 + exp{−(β0 + β1xi,1 + . . .+ βkxi,k)}

Implement the Metropolis-within-Gibbs algorithm for the posterior distribution of β given
the data, where at each iteration a single component of β is updated in turn with a
Metropolis-Hastings move. Take the prior distribution as β ∼ N (0, 100 × I). Use a
random walk proposal for the each component, where β′k ∼ N (βk, σ

2
q/n), where n is the

number of rows in the data. Run the algorithm for 100000 iterations. Adjust σ2
q to have a

good performance. Provide the details of your implementation: report the value of σq you
used. Plot the trace plot of the samples for β0 and β1 (versus iteration). By inspecting
those plots, determine a suitable burn-in time.



Appendix A

Some Basics of Probability

Summary: This chapter provides some basics of probability which is related to the content
of this course. The covered concepts are probability, random variables, cumulative distribu-
tion function, discrete and continuous distributions, probability mass function, probability
density function, expectation, independence, correlation and covariance, Bayes’ Theorem,
and posterior distribution

A Axioms and properties of probability

Let Ω be the sample space and F be the event space. (In a non-rigorous way, you can
think of F as the set of all subsets of Ω as an example.) A probability measure on (Ω,F)
is a function P : F → R that satisfies the following axioms of probability.

(A1) The probability of an event is a non-negative and real number:

P (E) ∈ R, P (E) ≥ 0, ∀E ∈ F .

(A2) Unitarity: The probability that at least one of the elementary events in the entire
sample space will occur is 1

P (Ω) = 1.

(A3) σ-additivity: A countable sequence of disjoint sets (or mutually exclusive sets) E1, E2, . . .
(Ei ∩ Ej = ∅ for all i 6= j) satisfies

P

(
∞⋃
i=1

Ei

)
=
∞∑
i=1

P (Ei)

Any function that satisfies those three axioms can be a probability measure. These axioms
lead to some useful properties of probability that we are familiar with.

(P1) The probability of the empty set:

P (∅) = 0.

(P2) Monotonicity:
P (A) ≤ P (B), ∀A,B ∈ F : A ⊆ B.

134
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(P3) The numeric bound:
0 ≤ P (E) ≤ 1, ∀E ∈ F .

(P4) Union of two sets:

P (A ∪B) = P (A) + P (B)− P (A ∩B), ∀A,B ∈ F .

(P5) Completion of a set:
P (Ac) = 1− P (A), ∀A ∈ F .

B Random variables

Suppose we are given the triple (Ω,F , P ). A real-valued random variable is a function

X : Ω→ R

such that {ω ∈ Ω : X(w) ≤ x} ∈ F for all x ∈ R. We need this condition since we need
the probability of this set in order to construct our cumulative distribution function.

Cumulative distribution function The probability distribution of X is mainly char-
acterised by its cumulative distribution function (cdf) denoted as F , which is defined as

F (x) := P (X ≤ x) = P ({ω ∈ Ω : X(ω) ≤ x}), x ∈ R.

There are three points to note here:

• The probability distribution of X is induced by P : There is always an implicit
reference to (Ω,F , P ) when one calculates P (X ≤ x), but we tend to forget it once
we have out cumulative distribution function F for X. This is because once we know
F , we know everything about the probability distribution of X and usually we do
not need to go back to the lower level and work with (Ω,F , P ) in practice. However,
it may be useful to know what a random variable is in general.

• The use of ≤ (and not <) is important. Especially for discrete random variables,
this matters a lot.

• Note that X, written in capital letter, represents the randomness in the probability
statement while x is a given certain value in R.

By definition, F has the following properties:

(P1) F is a non-decreasing function: For any a, b ∈ R, if a < b, then F (a) ≤ F (b).

(P2) F is right continuous (no jumps occur when the limit point is approached from the
right).
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(P3) limx→−∞ F (x) = 0.

(P4) limx→∞ F (x) = 1.

Any function that satisfies those four properties can be a cdf. Therefore, the definition
and the properties have an if and only if relation.

All the probability questions about X can be answered in terms of F . Examples:

• P (X ∈ (a, b]) = P (X ≤ b)− P (X ≤ a) = F (b)− F (a)

• P (X = a) = F (a)− limx→a− F (x). (the second term is a limit from the left)

• P (X ∈ [a, b]) = P (X ∈ (a, b]) + P (X = a) = F (b)− F (a) + [F (a)− limx→a− F (x)]

• P (X ∈ (a, b)) = P (X ∈ (a, b])− P (X = b) = F (b)− F (a)− [F (b)− limx→b− F (x)]

Depending on the nature of set of values X takes, it can be called a discrete or a
continuous random variable (sometimes neither of them!).

B.1 Discrete random variables

If X takes finite or countably infinite number of possible values in R, then X is called a
discrete random variable. The possible values of X may be listed as x1, x2, . . ., where the
sequence terminates in the finite case but continues indefinitely in the countably infinite
case.

Let p(xi) := P (X = xi), i = 1, 2, . . . The function p(·) is called the probability mass
function (pmf) of X and has the following properties: p(xi) ≥ 0, i = 1, 2, . . . and∑

i p(xi) = 1.
It can be shown that, for any x ∈ R,

F (x) =
∑
i:xi≤x

p(xi).

Hence, the cdf F of X is a step function where jumps occur at points xi with jump height
being p(xi) = P (X = xi) = F (xi)− F (xi−1).

Some discrete distributions: Some well known distributions with a pmf (hence the cdf
is a step function): Bernoulli B(ρ), Geometric distribution Geo(ρ), Binomial distribution
Binom(n, ρ) Negative binomial NB(r, ρ), Poisson distribution PO(λ).

B.2 Continuous random variables

If X takes values on a continuous subset RX of R (such as R itself, an interval [a, b] or
union of such intervals), then X is said to be a continuous random variable. Furthermore,
if F for X is continuous (i.e. no jumps), we have

P (X ∈ (a, b)) = P (X ∈ (a, b]) = P (X ∈ [a, b)) = P (X ∈ [a, b]) = F (b)− F (a).
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Also, if F is right differentiable, we can define the probability density function (pdf) for X

p(x) := lim
h→0

F (x+ h)− F (x)

h
=
∂+F (x)

∂x
, x ∈ R.

Since F is monotonic, we have p(x) ≥ 0 for all x ∈ R. Also, p integrates to 1 i.e.∫∞
−∞ p(x)dx =

∫
RX

p(x)dx = 1. All probability statements for X can be calculated using
f , such as

P (X ∈ [a, b]) = F (b)− F (a) =

∫ b

a

p(x)dx,

P (X ≤ a) = F (a) =

∫ a

−∞
p(x)dx.

From the above equation, we can conclude that P (X = x) = 0 for any x ∈ R, because∫ x

x

p(x)dx = F (x)− F (x) = 0.

B.2.1 Some continuous distributions

The following are some well known distributions with a continuous cdf (hence admitting a
pdf): Uniform distribution Unif(a, b), exponential distribution Exp(µ), gamma distribution
Γ(α, β), inverse gamma distribution IG(α, k), normal (Gaussian) distribution N (µ, σ2),
Beta distribution Beta(α, β).

B.3 Moments, expectation and variance

If X is a random variable, the n’th moment of X, n ≥ 1, denoted by E(Xn), is defined
for discrete and continuous random variables as follows:

E(Xn) :=

{∑
i x

n
i p(xi), if X is discrete,∫∞

−∞ x
np(x)dx, if X is continuous.

(A.1)

The first moment (n = 1) is called the expectation of X, also sometimes referred to as the
mean of X.

If |E(X)| < ∞, the n’th central moments of X, n ≥ 1, is defined for discrete and
continuous random variables as follows:

E([X − E(X)]n) :=

{∑
i[xi − E(X)]np(xi), if X is discrete,∫∞
−∞[x− E(X)]np(x)dx, if X is continuous.

(A.2)

The second central moment is the most notable of them and is called the variance of X
and denoted by V (X):

V(X) := E([X − E(X)]2).
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A useful identity relating V(X) to the expectation and the second moment of X is

V(X) = E(X2)− E(X)2.

Finally, the standard deviation of X is

σX :=
√
V(X).

B.4 More than one random variables

Suppose we have two real valued random variables, X : Ω → R and Y : Ω → R, both
defined on the same proabability space (Ω,F , P ).1 The joint distribution of X and Y is
characterised by the joint cdf FX,Y which is defined as

FX,Y (x, y) := P (X ≤ x, Y ≤ y) = P ({ω ∈ Ω : X(ω) ≤ x, Y (ω) ≤ y}).

The marginal cdf’s for X and Y can be deduced from FX,Y (x, y):

FX(x) = lim
y→∞

FX,Y (x, y), FY (y) = lim
x→∞

FX,Y (x, y).

Discrete variables: For discrete X and Y taking values xi, i = 1, 2, . . . and yj, j =
1, 2, . . ., we can define a joint pmf pX,Y for X and Y such that

pX,Y (xi, yj) := P (X = xi, Y = yj)

so that for any x, y ∈ R, we have

FX,Y (x, y) =
∑

i,j:xi≤x,yi≤y

pX,Y (xi, yj).

Expectation of any function g of X, Y can be evaluated using the joint pmf, for example

E(g(X, Y )) =
∑
i,j

pX,Y (xi, yj)g(xi, yj).

The marginal pmf ’s for X and Y are given as follows:

pX(xi) =
∑
j

pX,Y (xi, yj), pY (yj) =
∑
i

pX,Y (xi, yj),

1(X,Y ) together can be called a bivariate random variable. A generalisation of this is a multivariate
random variable of dimension m, such as (X1, X2, . . . , Xm).
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Continuous variables: Similar to the joint pmf defined for discrete X and Y , one can
define the joint pdf for continuous X and Y , assuming F is right-differentiable,

pX,Y (x, y) :=
∂2

+F (x, y)

∂x∂y

so that for any a, b, we have

FX,Y (a, b) =

∫ b

−∞

∫ a

−∞
pX,Y (x, y)dxdy

Expectation of any function g of X, Y can be evaluated using the joint pdf,

E(g(X, Y )) =

∫ ∞
−∞

∫ ∞
−∞

pX,Y (x, y)g(x, y)dxdy.

The marginal pdf ’s for X and Y can be obtained

pX(x) =

∫ ∞
−∞

pX,Y (x, y)dy, pY (y) =

∫ ∞
−∞

pX,Y (x, y)dx,

Independence: We say random variables X and Y are independent if for all pairs of
sets A ⊆ R, B ⊆ R we have

P (X ∈ A, Y ∈ B) = P (X ∈ A)P (Y ∈ B).

If X and Y are discrete variables taking xi, i = 1, 2, . . . and yj, j = 1, 2, . . ., then indepen-
dence between X and Y can be expressed as

pX,Y (xi, yj) = P (X = xi, Y = yj) = pX(xi)pY (yj), ∀i, j
If X and Y are continuous variables, then independence between X and Y can be expressed
as

pX,Y (x, y) = pX(x)pY (y), ∀x, y ∈ R.

Covariance and Correlation: Covariance between two random variables X and Y ,
Cov(X, Y ) is given as

Cov(X, Y ) := E([X − E(X)][Y − E(Y )])

= E(XY )− E(X)E(Y )

A normalised version of covariance is correlation ρ(X, Y ). Provided that V(X) ≥ 0 and
V(Y ) ≥ 0,

ρ(X, Y ) :=
Cov(X, Y )

σXσY
;

When one of V(X) and V(Y ) is 0, we set ρ(X, Y ) = 1 if X = Y and ρ(X, Y ) = 0 if X 6= Y .
One can show that

−1 ≤ ρ(X, Y ) ≤ 1.

Absolute value of ρ(X, Y ) indicates the level of correlation. We say two random variables
X, Y are uncorrelated if Cov(X, Y ) = 0 (hence ρ(X, Y ) = 0).

Note: Independence implies uncorrelatedness, but the reverse is not always true.
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C Conditional probability and Bayes’ rule

Consider the probability space (Ω,F , P ) again. Given two sets A,B ∈ F , the conditional
distribution of A given B is denoted by P (A|B) and is defined as

P (A|B) =
P (A ∩B)

P (B)

The Bayes’ rule is derived from this definition and it relates the two conditional probabil-
ities P (A|B) and P (B|A):

P (A|B) =
P (A)P (B|A)

P (B)
(A.3)

This relation can be written in terms of two random variables. Suppose X, Y are discrete
random variables with joint pmf pX,Y (xi, yj), where x ∈ X = {x1, x2, . . .} and y ∈ Y =
{y1, y2, . . .} so that the marginal pmf’s are

pX(x) =
∑
y∈Y

pX,Y (x, y), pY (y) =
∑
x

pX,Y (x, y), x ∈ X , y ∈ Y .

Then the conditional pmf’s pX|Y (x|y) and pY |X(y|x) are defined as

pX|Y (x|y) =
pX,Y (x, y)

pY (y)
, pY |X(y|x) =

pX,Y (x, y)

pX(x)
(A.4)

and Bayes’ rule relating them together is

pX|Y (x|y) =
pX(x)pY |X(y|x)

pY (y)
(A.5)

When X, Y are continuous random variables taking values from X and Y , respectively,
with a joint pdf pX,Y (x, y), similar definitions follow: The marginal pdf’s are

pX(x) =

∫ ∞
−∞

pX,Y (x, y)dy, pY (y) =

∫ ∞
−∞

pX,Y (x, y)dx.

The conditional pdf’s are defined exactly the same way as in (A.4) and (A.5).
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Discrete time Markov chains

Summary: This chapter provides some basics of discrete time discrete space Markov
chains.

The review made here is very brief and limited by the relation of Markov chains to the
topics covered in the course.

A Definition

Definition B.1 (Markov chain). A stochastic process {Xn}n≥1 on X is called a Markov
chain if its probability law is defined from the initial distribution η(x) and a sequence
of Markov transition (or transition, state transition) kernels (or probabilities, densities)
{Mn(x′|x)}n≥2 by finite dimensional joint distributions as

p(x1, . . . , xn) = η(x1)M2(x2|x1) . . .Mn(xn|xn−1)

for all n ≥ 1.

The random variable Xt is called the state of the chain at time t and X is called
the state-space of the chain. For uncountable X , we have a discrete-time continuous-
state Markov chain, and η(·) and Mn(·|xn−1) are pdf’s1. Similarly, X is countable (finite
or infinite), then the chain is a discrete-time discrete-state Markov chain and η(·) and
Mn(·|xn−1) are pmf’s. Moreover, when X = {x1, . . . , xm} is finite with m states, the
transition kernel can sometimes be expressed in terms of an m × m transition matrix
Mn(i, j) = P (Xn = j|Xn−1 = i).

The definition of the Markov chain leads to the characteristic property of a Markov
chain, which is also referred to as the weak Markov property : The current state of the
chain at time n depends only on the previous state at time n− 1.

p(xn|x1:n−1) = p(xn|xn−1) = Mn(xn−1, xn)

From now on, we will consider time-homogenous Markov chains where Mn = M for all
n ≥ 2, and we will denote them as Markov(η,M).

1In fact, there are exceptions where the transition kernels do not have a probability density; and this is
indeed the case for the transition kernel of the Markov chain of the Metropolis-Hastings algorithm which
we will see in Section C.3.1. However, for the sake of brevity we ignore this technical issue and with abuse
of notation pretend as if we always have a density for Mn(·|xn−1) for continuous states
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Figure B.1: State transition diagram of a Markov chain with 3 states, 1, 2, 3.

Example B.1. The simplest examples of a Markov chain are those with a finite state-space,
say of size m. Then, the transition rule can be expressed by an m×m transition probability
matrix M , which in this example is the following

M =

1/2 0 1/2
1/4 1/2 1/4
0 1 0


Also, the state-transition diagram of such a Markov chain with m = 3 states is given in
Figure B.1, where the state-space is simply {1, 2, 3}.
Example B.2. Let X = Z be the set of integers, X1 = 0, and for n > 1 define Xn as

Xn = Xn−1 + Vn,

where Vn ∈ {−1, 1} with p = P (Vn = 1) = 1 − P (Vn = −1) = 1 − q. This is a random
walk (of step-size 1) on Z and it is a time homogenous discrete-time discrete state Markov
chain with η(x1) = δ0(x1) and

M(x′|x) =

{
p, x′ = x+ 1

q, x′ = x− 1

When p = q, the process is called a symmetric random walk.

Example B.3. Let X = R, X1 = 0, and for n > 1 define Xn as

Xn = Xn−1 + Vn,

but this time Vn ∈ R with Vn ∼ N (0, σ2). This is a Gaussian random walk process on R
with normally distributed step sizes, and it is a time homogenous discrete-time continuous
state Markov chain with η(x1) = δ0(x1) and

M(x′|x) = φ(x′;x, σ2).
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Figure B.2: State transition diagram of the symmetric random walk on Z.

Example B.4. A generalisation of the Gaussian random walk is the first order autoregressive
process, or shortly AR(1). Let X = R the set of integers, X1 = 0, and for n > 1 define Xn

as
Xn = aXn−1 + Vn,

for some a ∈ R, and Vn ∈ R with Vn ∼ N (0, σ2). AR(1) is a time homogenous discrete-time
continuous state Markov chain with η(x1) = δ0(x1) and

M(x′|x) = φ(x′; ax, σ2).

When |a| < 1, another choice for the initial distribution is X1 ∼ N (0, σ2

1−a2 ), which is the
stationary distribution of {Xt}t≥1. We will see more on the stationary distributions below.

B Properties of Markov(η,M)

For MCMC, we require the Markov chain to have a unique invariant distribution π and to
converge to π. Before discussing that, we need to review some fundamental properties of a
discrete time Markov chain to understand when the existence of an invariant distribution
and convergence to it are ensured. Those properties will be discussed in specific to discrete-
state Markov chains only, for sake of simplicity and delivering the intuition behind the
concepts. Although for general state-space Markov chains similar concepts also exist, they
are more complicated and with less intuition, due to which we mostly omit them from our
review.

B.1 Irreducibility

In a discrete state Markov chain, for two states x, x′ ∈ X , we say x leads to x′ and show
it by x→ x′ if the chain can travel from x to x′ with a positive probability, i.e.

∃n > 1 s.t. P (Xn = x′|X1 = x) > 0

If both x→ x′ and x′ → x, we say x and x′ communicate and we show it by x↔ x′.
A subset of states C ⊆ X is called a communicating class, or simply class, if (i) all

x, x′ ∈ C communicate, and (ii) x ∈ C, x↔ y together imply y ∈ C, too (that is, there is
no such y /∈ C such that x↔ y for some x ∈ C).

A communicating class is closed if x ∈ C and x → y imply y ∈ C, that is there is no
path with positive probability from outside the class to any of the states of the class.



APPENDIX B. DISCRETE TIME MARKOV CHAINS 144

1 3 4

2 5

1/2

1/4

1/4

1

1/2

1/2

1/21/4

1/2

3/4

1 3

2 4

1/2 1

1/2

1/21/4

1/2

1/4

1/2

Figure B.3: State transition diagrams of two Markov chains that are not irreducible.

Definition B.2 (Irreducibiliy). A discrete state Markov chain is called irreducible if the
whole X is a communication class, i.e. all its states communicate.

For general state-spaces, we need to generalise the concept of irreducibility to φ-
irreducibility.

Example B.5. Figure B.3 shows two chains that are not irreducible. In the first chain, the
communication classes are {1, 2, 3} and {4, 5}; both are closed. In the second chain, the
communication classes are {1, 2} and {3, 4}; the first one is closed and the second one is
not.

B.2 Recurrence and Transience

In the discrete state-space, we say that a Markov chain is recurrent if every of its states is
expected to be visited by the chain infinitely often, otherwise it is transient. More precisely,
define the return time

τx = min{n ≥ 1 : Xn+1 = x}
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Definition B.3 (Recurrence). We say the state x ∈ X is recurrent if

P (τx <∞|X1 = x) = 1 (B.1)

or equivalently
∑∞

n=1 P (Xn = x|X1 = x) = ∞. If a state is not recurrent, it is called
transient.

If M is irreducible, then either every state is recurrent (and M is said to be recurrent)
or every state is transient (and M is said to be transient).

Example B.6. The random walk on integers in Example B.2 is an irreducible chain. It can
be shown that, in the symmetric case when p = q = 1/2, the chain is recurrent; if p 6= q,
the chain is transient.

Definition B.4 (Positive recurrence and null recurrence). We say a state x ∈ X is
positive recurrent if

E(τx|X1 = x) <∞ (B.2)

(Note that (B.2) is a stronger condition than (B.1).) If a recurrent state is not positive
recurrent, it is called null recurrent.

If M is irreducible and recurrent, then either every state is positive recurrent (and M
is said to be positive recurrent) or every state is null recurrent (and M is said to be null
recurrent).

To talk about recurrence in general state-space chains, instead of states we consider
accessible sets in relation to φ-irreducibility.

Example B.7. It can be shown that the random walk on integers in Example B.2 is a null
recurrent chain for p = q = 1/2.

B.3 Invariant distribution

A probability distribution π is called M -invariant if

π(x) =

∫
π(x′)M(x|x′)dx′

where we have assumed that {Xt}t≥1 is continuous (hence π is a pdf). When {Xt}t≥1 is
discrete (hence π is a pmf), this relation is written as

π(x) =
∑
x′

π(x′)M(x|x′)

The expressions on the RHS of the two equations above are short-handedly written as πM ,
so that for invariant π we have π = πM . In fact, when X = {x1, . . . , xm} is finite with
M(i, j) = P (Xn = j|Xn−1 = i) and π =

[
π(1) . . . π(m)

]
, we can indeed write π = πM

using notation for vector matrix multiplication.
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Theorem B.1 (Existence and uniqueness of invariant distribution). Suppose M
is irreducible. M has a unique invariant distribution if and only if it is positive recurrent.

Example B.8. The chain in Example B.1 has the invariant distribution π =
[
1/4 1/2 1/4

]
.

By solving µ = µM , it can be shown that π is the only invariant distribution, so the chain
is positive recurrent.

Example B.9. The random walk on integers in Example B.2 is irreducible. Therefore, it
does not have an invariant distribution since it is not positive recurrent for any choice of
p = 1− q.
Example B.10. The Markov chain on top of Figure B.3 has two invariant distributions
π =

[
1/4 1/2 1/4 0 0

]
and π =

[
0 0 0 1/3 2/3

]
although every state is positive

recurrent. Note that the chain is not irreducible with two isolated communication classes,
that is why Theorem B.1 is not applicable and uniqueness may not follow.

Example B.11. The Markov chain at the bottom of Figure B.3 is neither irreducible nor all
of its states are positive recurrent (the states of the second class are transient). However,
it has a unique invariant distribution, namely π =

[
1/3 2/3 0 0

]
. Note that for this

chain Theorem B.1 is not applicable since the chain is not irreducible.

B.4 Reversibility and detailed balance

One useful way for spotting the existence of an invariant probability measure for a Markov
chain is to check for its reversibility, which is a sufficient (but not necessary) condition for
existence of a stationary distribution.

Definition B.5 (reversibility). Let M be a transitional kernel having an invariant dis-
tribution and assume the associated Markov chain is started from π. We say that M is
reversible if the reversed process {Xn−m}0≤m<n is also Markov(π,M) for all n ≥ 1.

According to the definition above, M is reversible with respect to π if the backward
transition density of the process {Xn}n≥1 with X1 ∼ π is the same as its forward transition
density, i.e.

p(xn−1|xn) =
p(xn−1)p(xn|xn−1)

p(xn)
=

p(xn−1)M(xn|xn−1)∫
p(xn−1)M(xn|xn−1)dxn−1

= M(xn−1|xn).

This immediately leads to the necessary and sufficient condition for reversibility of M is
the detailed balance condition.

Proposition B.1 (detailed balance). We say a Markov kernel M is reversible with
respect to a probability distribution π if and only if the following condition, known as the
detailed balance condition, holds:

π(x)M(y|x) = π(y)M(x|y), x, y ∈ X .

Also, then π is an invariant distribution for M .
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Being a sufficient condition for stationarity, the detailed balance condition is quite
useful for designing transition kernels for MCMC algorithms.

s̀ubsectionErgodicity Let πn be the distribution of Xn of a Markov chain {Xn}n≥1 with
initial distribution η and transition kernels M . We have π1(x1) = η(x1) and the rest can
be written recursively as πn = πn−1M , or explicitly

πn(xn) =

∫
πn−1(xn−1)M(xn|xn−1)dxn−1

for continuous state chains, or

πn(xn) =
∑

xn−1∈X

πn−1(xn−1)M(xn|xn−1),

for discrete state chains, which reduces to

πn = πn−1M

when the state space is finite and π and M are considered as a vector and a matrix,
respectively.

In MCMC methods that aim to approximately sample from π, we generate a Markov
chain {Xn}n≥1 with invariant distribution π and hope that for n large enough Xn is ap-
proximately distributed from π. This relies on the hope that πn converges to π.

We have shown the conditions for a unique stationary distribution of a Markov chain.
Note that having a unique invariant distribution does not mean that the chain will converge
to its stationary distribution. For that to happen the Markov chain is required to have
aperiodicity, a property which restricts the chain from getting trapped in cycles.

Definition B.6 (aperiodicity). In a discrete state Markov chain, a state x ∈ X is called
aperiodic if the set

{n > 0 : P (Xn+1 = x|X1 = x)}

has no common divisor other than 1. Otherwise, the state is periodic and its period is the
greatest common divisor of state x. The Markov chain is said to be aperiodic if all of its
states are aperiodic.

If the Markov chain is irreducible, then aperiodicity of one state implies the aperiodicity
of all the states.

Definition B.7 (ergodic state). A state is called ergodic if it is positive recurrent and
aperiodic.

Finally, the definition of ergodicity for a Markov chain follows.

Definition B.8 (ergodic Markov chain). An irreducible Markov chain is called ergodic
if it is positive recurrent and aperiodic.
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Ergodic chains ensure that the sequence of distributions {πn}n≥1 for {Xn}n≥1 converge
to the invariant distribution π.

Theorem B.2. Suppose {Xn}n≥1 is a discrete-state ergodic Markov chain with any initial
distribution η and Markov transition kernel M with invariant distribution π. Then,

lim
n→∞

πn(x) = π(x) (B.3)

In particular, for all x, x′ ∈ X ,

lim
n→∞

P (Xn = x|X1 = x′) = π(x)

Example B.12. The Markov chain illustrated in Figure B.4 is irreducible and positive
recurrent; so it has a unique invariant distribution, which is π =

[
1/3 1/3 1/3

]
. However,

it is periodic with period 3, and as a result πn does not converge to π unless η = π. Indeed,
one can show that for η =

[
η(1) η(2) η(3)

]
, we have

πn = ηMn−1 =
[
η(mod(n− 1, 3) + 1) η(mod(n− 1, 3) + 2) η(mod(n− 1, 3) + 3)

]
.

1 3

2

1 1

1

Figure B.4: An irreducible, positive recurrent, and periodic Markov chain.



Appendix C

Exact sampling methods

A Pseudo-random number generation

“The generation of random numbers is too important to be left to chance” and truly
random numbers are impossible to generate on a deterministic computer. Published tables
or other mechanical methods such as throwing dice, flipping coins, shuffling cards or turning
the roulette wheels are clearly not very practical for generating the random numbers that
are needed for computer simulations. Other techniques rely on chaotic behaviour, such
as the thermal noise in Zener diodes or other analog circuits as well as the atmospheric
noise (see, e.g., www.Random.org) or running a hash function against a frame of a video
stream. Still, the vast amount of random numbers are obtained from pseudo-random
number generators. Apart from being very efficient, one additional advantage of these
techniques is that the sequences are reproducible by setting a seed, this property is key for
debugging a Monte Carlo code.

Today, in most applications the task of random variable generation is performed on
computers. In fact, a computer is mainly responsible for generating pseudo-random num-
bers that look as if they are independent and distributed uniformly from between 0 and
1, so goes the name “pseudo-random”. That is, any sequence of pseudo-random numbers
that are produced by the pseudo-random number generator should look like a sequence of
i.i.d. uniformly distributed random numbers between 0 and 1, showing no correlation and
spreading over the (0, 1) interval uniformly.

There already exist highly sophisticated numerical methods to generate such pseudo-
random numbers that pass certain tests for uniformity and independence. The most well
known method for generating random numbers is based on a Linear Congruential Generator
(LCG). The theory is well understood, and the method is easy to implement and fast. A
LCG is defined by the recurrence relation:

xn+1 = (axn + c)(mod M)

If the coefficients a and c are chosen carefully (e.g. relatively prime to M), xn will be
roughly uniformly distributed between 0 and M − 1 (and with normalisation by M they
can be shrunk between 0 and 1). By “roughly uniformly” we mean that the sequence of
numbers xn will pass many reasonable tests for randomness. One such test suite are the
so called DIEHARD tests, developed by George Marsaglia, that are a battery of statistical
tests for measuring the quality of a random number generator.

149
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A more recently proposed generator is the Mersenne Twister algorithm, by Matsumoto
and Nishimura, 1997. It has several desirable features such as a long period and being very
fast. Many public domain implementations of the algorithm exist and it is the preferred
random number generator for statistical simulations and Monte Carlo computations.

These random number generators provide uniformly distributed numbers on an interval.
Hence, provided we have a good random number generator that can generate uniformly
random integers (say between 0 and 264−1), the resulting integers can be used to generate
double precision numbers almost uniformly distributed in (0, 1).

B Some exact sampling methods

In the sequel, we will assume that a computer can produce for us an independent variable

U ∼ Unif(0, 1)

every time we ask it to do so. The crucial part is how to transform one or more copies of
U such that the resulting number is distributed according to a particular distribution that
we want to sample from. In a more general context, how can one exploit the ability of the
computer to generate uniform random variables so that we can obtain random numbers
from any desired distribution?

In the following we will see some exact sampling methods.

B.1 Method of inversion

Suppose X ∼ P taking values in X ⊆ R with cdf F as defined above: F (x) = P(X ≤ x),
x ∈ R. Recall that F takes values in [0, 1]. Define the generalised inverse cdf G : (0, 1)→ R
as

G(u) := inf{x ∈ X : F (x) ≥ u}. (C.1)

Remark C.1. Define the set S(u) = {x ∈ X : F (x) ≥ u}. We can show that, by right-
continuity of F , S(u) actually attains its infimum, that is the minimum of S(u) exists and
hence inf S(u) = minS(u), or S(u) = [G(u),∞)1.

If X is discrete taking values x1, x2, . . ., this definition reduces to G(u) = xi∗ where
i∗ = min{i : F (xi) ≥ u}. In other words, G(u) = xi∗ such that

F (xi∗−1) < u ≤ F (xi∗). (C.2)

If X is continuous with a pdf p(x) > 0 for all x ∈ X , (i.e. F has no jumps and no flat
parts in X ), then F is strictly monotonic in X , its inverse G = F−1 can be defined on X ,
and we simply have G(u) = F−1(u).

The following Lemma enables the method of inversion.

1Proof: If x < G(u), x /∈ S(u) by definition. If x > G(u), then there exists x′ < x with x′ ∈ S(u);
since F is non-decreasing, F (x) ≥ F (x′) ≥ u, so x ∈ S(u). Finally, by the right-continuity of F , we have
F (G(u)) = inf F (y) : y > G(u) ≥ u. Therefore G(u) ∈ S(u) and S(u) = [G(u),∞)
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Exp(1) : sampling via the method of inversion
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Figure C.1: Method of inversion for the exponential distribution

Lemma C.1. If U ∼ Unif(0, 1), G(U) ∼ P

Proof. Since S(u) = [G(u),∞) (see Remark C.1), we have x ≥ G(u) if and only if F (x) ≥
u. Hence, P(X ≤ x) = P(G(U) ≤ x) = P(U ≤ F (x)) = F (x).

Lemma C.1 suggests we can sample X ∼ P by first sampling U ∈ Unif(0, 1) and then
transforming X = G(U). This approach is called the method of inversion.

Corollary C.1. Suppose F is continuous. If X ∼ P , then F (X) ∼ Unif(0, 1).

Proof. Since we have S(u) = [G(u),∞), x ≥ G(u) implies F (x) ≥ u. Moreover, if x < G(u)
then F (x) < u by definition of G. By continuity of F , we have F (G(u)) = u, so F (x) ≤ u
if and only if x ≤ G(u). Hence P(F (X) ≤ u) = P(X ≤ G(u)) = F (G(u)) = u, and we
conclude that the cdf of F (X) is the cdf of Unif(0, 1).

Example C.1. Suppose we want to sample X ∼ P = Exp(λ) from the exponential distri-
bution with rate parameter λ > 0. The pdf of Exp(λ) is

p(x) =

{
λe−λx, x ≥ 0

0, else
.

The cdf is

u = F (x) =

{∫ x
0
λe−λtdt = 1− e−λx, x ≥ 0

0, else
.

Therefore, we have x = − log(1− u)/λ. So, we can generate U ∼ Unif(0, 1) and transform
X = − log(1− U)/λ ∼ Exp(λ). See Figure C.1 for an illustration.
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Geo(0.3): sampling via the method of inversion
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Figure C.2: Method of inversion for the geometric distribution

Example C.2. Suppose we want to sampleX ∼ P = Geo(ρ) from the geometric distribution
on X = N with success rate parameter ρ ∈ (0, 1) and pmf2

p(x) = (1− ρ)xρ, x = 0, 1, 2 . . . .

Making use of
∑x

i=0 α
i = 1−αx+1

1−α with α = 1− ρ, the cdf at the support points is given by

F (x) = 1− (1− ρ)x+1.

Given U = u sampled from Unif(0, 1), the rule in (C.2) implies

1− (1− ρ)x < u ≤ 1− (1− ρ)x+1

Solving the inequality for x we arrive at

log(1− u)

log(1− ρ)
− 1 ≤ x <

log(1− u)

log(1− ρ)
.

This is nothing but the round-up function written explicitly:

x =

⌈
log(1− u)

log(1− ρ)
− 1

⌉
.

See Figure C.2 for an illustration.

2This distribution is used for the number of trials prior to the first success in a Bernoulli process with
success rate ρ. Another convention is to take the support range as 1, 2, . . . rather than 0, 1, 2 and interpret
X as the number of trials until the successful trial, including the successful one. Then the pmf changes to
p(x) = (1− ρ)x−1ρ, x ≥ 1
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B.2 Transformation (change of variables)

The method of inversion can be seen as a transformation from U to X = G(U). In fact,
one can use transformation in a more general sense than using G by considering a change
of variables via a suitable function g.

Example C.3. If we want to sample from X ∼ Unif(a, b), a < b, we can sample U ∼
Unif(0, 1) and use the transformation

X = g(U) := (b− a)U + a. (C.3)

Transformation can also be used for more complicated situations than in Example C.3.
Suppose we have an m-dimensional random variable X ∈ X ⊆ Rm with pdf pX(x) and we
apply a transform to X using an invertible function g : X → Y , where Y ⊆ Rm to obtain

Y = (Y1, . . . , Ym) = g(X1, . . . , Xm)

Since g is invertible, we have X = g−1(Y ). What is the pdf of Y , pY (y)? This density can
be found as follows: Define the Jacobian determinant (or simply Jacobian) of the inverse
transformation g−1 as

J(y) = det
∂g−1(y)

∂y
(C.4)

The usual practice to ease the notation is to introduce the short hand notation (y1, . . . , ym) =
g(x1, . . . , xm) and write J(y) by making implicit reference to g as

J(y) = det
∂x

∂y
= det

∂(x1, . . . , xm)

∂(y1, . . . , ym)
= det

∂x1/∂y1 . . . ∂x1/∂ym
...

. . .
...

∂xm/∂y1 . . . ∂xm/∂ym


The Jacobian is useful for integration: If we make a change of variables from x → y, we
have to substitute dx = |J(y)|dy. When we apply this for the integral of any function
ϕ : X → R with respect to pX(x), we have∫

pX(x)ϕ(x)dx =

∫
pX(g−1(y))ϕ(g−1(y)) |J(y)| dy

=

∫
pX(g−1(y)) |J(y)|ϕ(g−1(y))dy

=

∫
pY (y)ϕ(g−1(y))dy

where

pY (y) := pX(g−1(y)) |J(y)| (C.5)

is the pdf of Y .
Change of variables can be useful when P is difficult to sample from using the method

of inversion but X ∼ P can be performed by a certain transformation of random variables
that are easier to generate, such as uniform random variables.
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Example C.4. We describe the Box-Muller method for generating random variables from
the standard normal (Gaussian) distribution N (0, 1). The pdf for N (µ, σ2) is

φ(x;µ, σ2) =
1√

2πσ2
e−

1
2σ2

(x−µ)2

The method of inversion is not an easy option to sample from N (0, 1) since the cdf of
N (0, 1) is not easy to invert. Instead we use transformation.

The Box-Muller method generates a pair of independent standard normal random vari-

ables X1, X2
i.i.d.∼ N (0, 1) as follows: First we generate

R ∼ Exp(1/2), Θ ∼ Unif(0, 2π).

and then apply the transformation

X1 =
√
R cos(Θ), X2 =

√
R sin(Θ)

If we wanted to start off from uniform random numbers, we could consider generating

U1, U2
i.i.d.∼ Unif(0, 1) and setting R = −2 log(U1) and Θ = 2πU2 so that R,Θ are distributed

as desired. In other words,

X1 =
√
−2 log(U1) cos(2πU2), X2 =

√
−2 log(U1) sin(2πU2)

One way to see why this works is to use change of variables. Note that3

(R,Θ) = (X2
1 +X2

2 , arctan(X2/X1))) (C.6)

Then the Jacobean at (x1, x2) = (
√
r cos θ,

√
r sin θ) is

J(x1, x2) =

∣∣∣∣∂r/∂x1 ∂r/∂x2

∂θ/∂x1 ∂θ/∂x2

∣∣∣∣ =

∣∣∣∣ 2x1 2x2
1

1+(y2/y1)2
−y2
y21

1
1+(y2/y1)2

1
y1

∣∣∣∣ = 2 (C.7)

Therefore, we can apply (C.5) to get

pX1,X2(x1, x2) = pR(r)pΘ(θ)|J(x1, x2)|
= pR(x2

1 + x2
2)pΘ(arctan(x2/x1))|J(x1, x2)|

=
1

2
e−

1
2

(x21+x22) 1

2π
2

=
1√
2π
e−

1
2
x21

1√
2π
e−

1
2
x22

= φ(x1; 0, 1)φ(x2; 0, 1) (C.8)

which is the product of pdf of N (0, 1) evaluated at x1 and x2. Therefore, we conclude that

X1, X2
i.i.d.∼ N (0, 1).

3To be precise, Θ = arctan(X2/X1) + πI(X1 < 0) since Θ ∈ [0, 2π], but omitting the extra term
πI(X1 < 0) does not change the results.
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Multivariate normal distribution: Another important transformation that we should
be familiar with is a linear transformation of a multivariate normal random variable. We
denote the distribution of an n× 1 multivariable normal random variable as X ∼ N (µ,Σ)
where µ = E(X) is an n× 1 mean vector and

Σ = Cov(X) = E[(X − µ)(X − µ)T ]

is an n× n symmetric positive definite4 covariance matrix The (i, j)’th element of Σ is

σij = Cov(Xi, Xj) = E[(Xi − µi)(Xj − µj)] = E(XiXj)− µiµj

The pdf of this distribution is (using the same letter as for the pdf of the univariate normal
distribution)

φ(x;µ,Σ) =
1

|2πΣ|1/2
exp

{
−1

2
(x− µ)TΣ−1(x− µ)

}
(C.9)

where | · | stands for determinant.
Suppose X = (X1, . . . , Xn)T ∼ N (µ,Σ) and we have the transformation

Y = AX + η

where A is an m×n matrix with m ≤ n with rank m5, and η is an m×1 vector. We know
for a fact that a linear transformation of X has to be normally distributed as well. Also,
the normal distribution is completely characterised by its mean and covariance. Therefore,
we can work out the mean and the variance of Y in order to identify its distribution.

E(Y ) = E(AX + η)

= AE(X) + η

= Aµ+ η

Cov(Y ) = E([Y − E(Y )][Y − E(Y )]T )

= E([AX + η − (Aµ+ η)][AX + η − (Aµ+ η)]T )

= E(A(X − µ)(X − µ)TAT ) = ACov(X)AT

= AΣAT

Therefore, Y ∼ N (Aµ+ η,AΣAT ).

Example C.5. The above derivation suggests a way to generate an n-dimensional mul-
tivariate sample X ∼ N (µ,Σ). We can first generate i.i.d. normal random variables

R1, . . . , Rn
i.i.d.∼ N (0, 1) so that R = (R1, . . . , Rn) ∼ N (0n, In) where 0n is the n× 1 vector

of zeros and In is the identity matrix of size n. Then, we decompose Σ = AAT using the
Cholesky decomposition. Finally, we let X = AR + µ. Observe that the mean of X is
A0n + µ = µ and covariance matrix of X is AInA

T = AAT = Σ, so we are done.
4In fact, positive semi-definite covariance matrices are also allowed, however the distribution is called

degenerate and it does not have a pdf.
5We constraint A to full row rank matrices since otherwise the resulting covariance matrix for AΣAT

is no longer positive definite and Y is degenerate.
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B.3 Composition

Let a random variable Z ∼ Π taking values from the set Z and Π has a pdf or pmf shown
as π(z). Suppose also that given z, X|z ∼ Pz where each Pz admits either a pmf or a
pdf shown as pz(x). Then the marginal distribution P is a mixture distribution and in the
presence of pdf’s or pmf’s, we have

p(x) =

{∫
pz(x)π(z)dz, if π(z) is a pdf∑
z pz(x)π(z), if π(z) is a pmf

(C.10)

Whether p(x) is pmf or a pdf depends on whether pz(x) is pmf or pdf. The integral/sum
may be hard to evaluate, and the mixture distribution may be hard to sample directly.
But if we can easily sample from Π and from each Pz, then we can just

1. sample Z ∼ Π,

2. sample X ∼ PZ , and

3. ignore Z and return X.

The random number we produce in this way will be an exact sample from P , i.e. X ∼ P .
This is the method of composition. Ignoring Z is also called marginalisation, by which we
overcome the difficulty of dealing with the tough integral/sum in (C.10).

Example C.6. The density of a mixture of Gaussian distribution with K components with
means and variance values (µ1, σ

2
1), . . . , (µK , σ

2
K), and probability weights w1, . . . , wK for

its components (such that w1 + · · ·+ wK = 1) is given by

p(x) =
K∑
k=1

wkφ(x;µk, σ
2
k).

To sample from p(x), we first sample the component number k with probability wk (for
example using the method of inversion), and given k, we sample X ∼ N (µk, σ

2
k)

Example C.7. A sales company decides to reveal the demand D for a product over a
month. However, for privacy reasons, it shares this average by adding some noise to D,
which results in the shared value X. It is given that the distribution of the revealed demand
X has the pdf

p(x) =
∑
d

[
e−λλd

d!

] [
1

2b
exp

(
−|x− d|

b

)]
We want to perform a Monte Carlo simulation for this data sharing process. How do we
sample X ∼ P?

Although p(x) looks hard, observe that the first term in the sum is the pmf of PO(λ)
evaluated at d (can be viewed as the demand) and the second term in the sum is the pdf of
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Laplace(d, b) evaluated at x (can be viewed as the noisy demand)6. Therefore, generation
of X is possible by the method of composition as

1. Sample D ∼ PO(λ),

2. Sample X ∼ Laplace(D, b) (equivalent to V ∼ Laplace(0, b) and X = D + V .).

3. Ignore D and return X.

It is an exercise for you to figure out how one can sample from the Poisson and Laplace
distributions.

6The pmf of PO(λ) evaluated at k is e−λλk

k! , and the pdf of Laplace(µ, b) evaluated at x is
1
2b exp

(
− |x−µ|b

)



Appendix D

Term project: A toolbox for ANOVA
and Linear regression

In your term project, you will submit a small toolbox for ANOVA and linear regression,
which is package of functions, written in a language that you are comfortable with. The
toolbox will contain the functions named and described below, as well as a main script
that demonstrates the use of the functions with examples. A readme text file describing
the functions and explaining how to use the toolbox in general should also be added.

ANOVA

• ANOVA1 partition TSS

Write a function that partitions the sum of squares in a one way ANOVA layout.
The function should take a data set Xi,j for j = 1, . . . , ni and i = 1, . . . , I, and return
SStotal, SSw, and SSb in (2.2).

• ANOVA1 test equality

Write a function that tests the equality of the means in a one way ANOVA layout.
The input is a data set Xi,j for j = 1, . . . , ni and i = 1, . . . , I, and the significance
level α. As the output, the function prints all the quantities in the table at the end
of Section A.2, as well as the critical value, the p-value, and the decision.

• ANOVA1 is contrast

Write a function that takes c1, c2, . . . , cI as an input and determines whether or not
a linear combination defined by c1, c2, . . . , cI is a contrast.

• ANOVA1 is orthogonal

Write a function that takes group sizes n1, . . . , nI and coefficients c1,1, c1,2, . . . , c1,I

and c2,1, c2,2, . . . , c2,I and determines whether or not the corresponding contrasts are
orthogonal. Your function should return a warning if any of the linear combinations
is not a contrast.

• Bonferroni correction

Write a function that takes a FWER α and the number of tests m and determines
the significance level that each test must have with Bonferroni correction.
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• Sidak correction

Write a function that takes a FWER α and the number of tests m and determines
the significance level of each test with Sidak’s correction.

• ANOVA1 CI linear combs

Write a function whose inputs and outputs are follows:

Input:

– a data set Xi,j for j = 1, . . . , ni and i = 1, . . . , I,

– Significance level α,

– An m × I matrix C, where each row defines linear combination of the group
means.

– Method: This may be “Scheffe”, “Tukey”, “Bonferroni”, “Sidak”, “best”

Output: As the output, the function should return simultaneous confidence intervals
for those linear combinations.

Your function should determine whether the chosen method is valid for the inputted
linear combinations. If not, it should give a warning and not return anything. (For
example, Tukey’s confidence intervals are valid for pairwise comparisons only.)

If “Scheffe” is chosen, the function should choose between Theorem 2.7 or Theorem
2.8 depending on whether the linear combination is a contrast or not.

If “best” is chosen, your function should check the number and the nature of the linear
combinations and choose the best method among the valid ones, i.e. the method with
narrowest confidence intervals.

Here are some example cases:

– If all linear combinations are contrasts, you have several options:

∗ If those contrasts are orthogonal as well, you should compare Theorem 2.8
with Sidak’s correction.

∗ If all linear combinations are contrasts but not orthogonal, then you should
compare Theorem 2.8 with Bonferroni’s correction.

∗ If all linear combinations are pairwise differences, then you should compare
Tukey’s confidence intervals and Bonferroni’s correction.

∗ If all linear combinations are pairwise differences and orthogonal, then you
should compare Tukey’s confidence intervals with Sidak’s correction.

– If not all linear combinations are contrasts, you have Theorem 2.7 and Bonfer-
roni’s correction:

– etc.



APPENDIX D. A TOOLBOX FOR ANOVA AND LINEAR REGRESSION 160

• ANOVA1 test linear combs

Write a function whose inputs and outputs are follows:

Input:

– a data set Xi,j for j = 1, . . . , ni and i = 1, . . . , I,

– FWER α,

– An m × I matrix C and a m × 1 vector d, where each row of C defines linear
combination of the group means and each element of d is the hypothesized value
for the corresponding combination.

H0 : ci,1µ1 + . . .+ ci,IµI = di, i = 1, . . . ,m.

– Method: This may be “Scheffe”, “Tukey”, “Bonferroni”, “Sidak”, “best”.

Output: As the output, the function should return the test outcomes, with p-values
in such a way that FWER is kept at α.

The comments for the previous questions apply to this one, too.

• ANOVA2 partition TSS

Write a function that takes Xi,j,k for i = 1, . . . , I, j = 1, . . . , J , and k = 1, . . . , K in
a two way ANOVA layout and returns SStotal, SSA, SSB, SSAB, and SSE.

• ANOVA2 MLE

Write a function that takes Xi,j,k for i = 1, . . . , I, j = 1, . . . , J , and k = 1, . . . , K
in a two way ANOVA layout and returns the maximum likelihood estimates for the
parameters µ, ai, bj, δij.

• ANOVA2 test equality

Write a function that performs one of the basic three tests in the two-way ANOVA
layout. The function takes Xi,j,k for i = 1, . . . , I, j = 1, . . . , J , and k = 1, . . . , K, and
a significance level α and performs one of the following (depending on the choice)

– The hypothesis that a1 = . . . = aI = 0.

– The hypothesis that b1 = . . . = bJ = 0.

– The hypothesis that all δij’s are equal to 0.

The choice for the test should also be inputted as an input as either “A”, “B”, or
“AB”. The function should print the relevant rows of the table below, depending on
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the test to be run:

Source degrees of freedom SS MS F
A I − 1 SSA MSA MSA/MSE
B J − 1 SSB MSB MSB/MSE

A×B (I − 1)(J − 1) SSAB MSAB MSAB/MSE
within IJ(K − 1) SSE MSE
Total IJK − 1 SStotal

Linear regression

• Mult LR Least squares

Write a function that finds the least squares solution according to the multiple linear
regression model: The function takes X and y, the design matrix and the response
vector, and produces the maximum likelihood estimators for β and σ2 as well as the
unbiased estimate for σ2.

• Mult LR partition TSS

Write a function that takes an n × (k + 1) matrix X, n × 1 vector y as inputs and
returns the total sum of squares, regression sum of squares, and residual sum of
squares.

The rest of the questions will be answered according to the normal multiple linear
regression model.

• Mult norm LR simul CI

Write a function that takes X and y, the design matrix and the response vector, and
a significance parameter α, and produces confidence intervals for βi’s that simulta-
neously hold with probability 1− α.

• Mult norm LR CR

Write a function that takes an n×(k+1) matrix X, n×1 vector y, an r×(k+1) matrix
C with rank r, and a significance level α as inputs, and returns the specifications
(that is, parameters of the ellipsoid) of the 100(1 − α)% confidence region for Cβ
according to the normal multiple linear regression model.

• Mult norm LR is in CR

Write a function that takes an n× (k + 1) matrix X, n× 1 vector y, an r × (k + 1)
matrix C with rank r, a r × 1 vector c0, and a significance level α as inputs, and
answers whether c0 is in the 100(1− α)% confidence region for Cβ according to the
normal multiple linear regression model.
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• Mult norm LR test general

Write a function that takes an n× (k + 1) matrix X, n× 1 vector y, an r × (k + 1)
matrix C with rank r, a r×1 vector c0, and a significance level α as inputs, and tests
the null hypothesis H0 : Cβ = c0 vs H1 : Cβ 6= c0 at a significance level of α. [Note
that you can use this function to test any hypothesis regarding linear regression]

• Mult norm LR test comp

Write a function that takes an n × (k + 1) matrix X, n × 1 vector y, a significance
level α, and j1, . . . , jr ∈ {0, . . . , k} as inputs, and returns the outcome of testing
H0 : βj1 = . . . = βjr = 0 vs H1 : not H0. You can use the previous function with a
suitable C and c0.

• Mult norm LR test linear reg

Write a function that takes an n × (k + 1) matrix X, n × 1 vector y, a significance
level α as inputs, and returns the outcome of testing the existence of linear regression
at all, i.e., H0 : β1 = . . . = βk = 0 vs H1 : not H0. You can use the previous function
with a suitable j1 = 1, . . . , jk = k.

• Mult norm LR pred CI

Write a function that takes a n × (k + 1) matrix X, n × 1 vector y, a m × (k + 1)
matrix D, a significance level α, and a method as inputs, and returns simultaneous
confidence bounds for diβ for all i = 1, . . . ,m according to the normal multiple linear
regression model, where di is the i’th row of the matrix. The bounds should hold
simultaneously with probability 1− α at least. The possible choices for the method
are “Bonferroni”, “Scheffe”, and “best”, where “best” is the best of the two.

Main script

Finally, write a main script that demonstrates all the functions in action. The script should
have an example for each function whose output for a sample input is printed on the screen.
You can generate your own data sets for the examples, or obtain suitable sample datasets
from other sources. I will start checking your code by running this main script.
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